kstreams


Namekstreams JSON
Version 0.26.4 PyPI version JSON
download
home_pageNone
SummaryBuild simple kafka streams applications
upload_time2025-01-06 13:43:45
maintainerSantiago Fraire Willemoës
docs_urlNone
authorMarcos Schroh
requires_python<4.0,>=3.9
licenseApache-2.0
keywords stream processing kafka event streaming
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Kstreams

`kstreams` is a library/micro framework to use with `kafka`. It has simple kafka streams implementation that gives certain guarantees, see below.

![Build status](https://github.com/kpn/kstreams/actions/workflows/pr-tests.yaml/badge.svg?branch=master)
[![codecov](https://codecov.io/gh/kpn/kstreams/branch/master/graph/badge.svg?token=t7pxIPtphF)](https://codecov.io/gh/kpn/kstreams)
![python version](https://img.shields.io/badge/python-3.8%2B-yellowgreen)

---

**Documentation**: https://kpn.github.io/kstreams/

---

## Installation

```bash
pip install kstreams
```

You will need a worker, we recommend [aiorun](https://github.com/cjrh/aiorun)

```bash
pip install aiorun
```

## Usage

```python
import aiorun
from kstreams import create_engine, ConsumerRecord


stream_engine = create_engine(title="my-stream-engine")

@stream_engine.stream("local--kstream")
async def consume(cr: ConsumerRecord):
    print(f"Event consumed: headers: {cr.headers}, payload: {cr.value}")


async def produce():
    payload = b'{"message": "Hello world!"}'

    for i in range(5):
        metadata = await stream_engine.send("local--kstreams", value=payload)
        print(f"Message sent: {metadata}")


async def start():
    await stream_engine.start()
    await produce()


async def shutdown(loop):
    await stream_engine.stop()


if __name__ == "__main__":
    aiorun.run(start(), stop_on_unhandled_errors=True, shutdown_callback=shutdown)
```

## Features

- [x] Produce events
- [x] Consumer events with `Streams`
- [x] Subscribe to topics by `pattern`
- [x] `Prometheus` metrics and custom monitoring
- [x] TestClient
- [x] Custom Serialization and Deserialization
- [x] Easy to integrate with any `async` framework. No tied to any library!!
- [x] Yield events from streams
- [x] [Opentelemetry Instrumentation](https://github.com/kpn/opentelemetry-instrumentation-kstreams)
- [x] Middlewares
- [x] Hooks (on_startup, on_stop, after_startup, after_stop)
- [ ] Store (kafka streams pattern)
- [ ] Stream Join
- [ ] Windowing

## Development

This repo requires the use of [poetry](https://python-poetry.org/docs/basic-usage/) instead of pip.
*Note*: If you want to have the `virtualenv` in the same path as the project first you should run `poetry config --local virtualenvs.in-project true`

To install the dependencies just execute:

```bash
poetry install
```

Then you can activate the `virtualenv` with

```bash
poetry shell
```

Run test:

```bash
./scripts/test
```

Run code formatting with ruff:

```bash
./scripts/format
```

### Commit messages

We use [conventional commits](https://www.conventionalcommits.org/en/v1.0.0/) for the commit message.

The use of [commitizen](https://commitizen-tools.github.io/commitizen/) is recommended. Commitizen is part of the dev dependencies.

```bash
cz commit
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "kstreams",
    "maintainer": "Santiago Fraire Willemo\u00ebs",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": "santiago.fraire@kpn.com",
    "keywords": "stream, processing, kafka, event streaming",
    "author": "Marcos Schroh",
    "author_email": "marcos.schroh@kpn.com",
    "download_url": "https://files.pythonhosted.org/packages/e8/cb/a99784f15f38082b37e0b27405f6377c3f6e69059e6f03441a5d2008778c/kstreams-0.26.4.tar.gz",
    "platform": null,
    "description": "# Kstreams\n\n`kstreams` is a library/micro framework to use with `kafka`. It has simple kafka streams implementation that gives certain guarantees, see below.\n\n![Build status](https://github.com/kpn/kstreams/actions/workflows/pr-tests.yaml/badge.svg?branch=master)\n[![codecov](https://codecov.io/gh/kpn/kstreams/branch/master/graph/badge.svg?token=t7pxIPtphF)](https://codecov.io/gh/kpn/kstreams)\n![python version](https://img.shields.io/badge/python-3.8%2B-yellowgreen)\n\n---\n\n**Documentation**: https://kpn.github.io/kstreams/\n\n---\n\n## Installation\n\n```bash\npip install kstreams\n```\n\nYou will need a worker, we recommend [aiorun](https://github.com/cjrh/aiorun)\n\n```bash\npip install aiorun\n```\n\n## Usage\n\n```python\nimport aiorun\nfrom kstreams import create_engine, ConsumerRecord\n\n\nstream_engine = create_engine(title=\"my-stream-engine\")\n\n@stream_engine.stream(\"local--kstream\")\nasync def consume(cr: ConsumerRecord):\n    print(f\"Event consumed: headers: {cr.headers}, payload: {cr.value}\")\n\n\nasync def produce():\n    payload = b'{\"message\": \"Hello world!\"}'\n\n    for i in range(5):\n        metadata = await stream_engine.send(\"local--kstreams\", value=payload)\n        print(f\"Message sent: {metadata}\")\n\n\nasync def start():\n    await stream_engine.start()\n    await produce()\n\n\nasync def shutdown(loop):\n    await stream_engine.stop()\n\n\nif __name__ == \"__main__\":\n    aiorun.run(start(), stop_on_unhandled_errors=True, shutdown_callback=shutdown)\n```\n\n## Features\n\n- [x] Produce events\n- [x] Consumer events with `Streams`\n- [x] Subscribe to topics by `pattern`\n- [x] `Prometheus` metrics and custom monitoring\n- [x] TestClient\n- [x] Custom Serialization and Deserialization\n- [x] Easy to integrate with any `async` framework. No tied to any library!!\n- [x] Yield events from streams\n- [x] [Opentelemetry Instrumentation](https://github.com/kpn/opentelemetry-instrumentation-kstreams)\n- [x] Middlewares\n- [x] Hooks (on_startup, on_stop, after_startup, after_stop)\n- [ ] Store (kafka streams pattern)\n- [ ] Stream Join\n- [ ] Windowing\n\n## Development\n\nThis repo requires the use of [poetry](https://python-poetry.org/docs/basic-usage/) instead of pip.\n*Note*: If you want to have the `virtualenv` in the same path as the project first you should run `poetry config --local virtualenvs.in-project true`\n\nTo install the dependencies just execute:\n\n```bash\npoetry install\n```\n\nThen you can activate the `virtualenv` with\n\n```bash\npoetry shell\n```\n\nRun test:\n\n```bash\n./scripts/test\n```\n\nRun code formatting with ruff:\n\n```bash\n./scripts/format\n```\n\n### Commit messages\n\nWe use [conventional commits](https://www.conventionalcommits.org/en/v1.0.0/) for the commit message.\n\nThe use of [commitizen](https://commitizen-tools.github.io/commitizen/) is recommended. Commitizen is part of the dev dependencies.\n\n```bash\ncz commit\n```\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Build simple kafka streams applications",
    "version": "0.26.4",
    "project_urls": null,
    "split_keywords": [
        "stream",
        " processing",
        " kafka",
        " event streaming"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "211afaf826e3c5755222f2ae8ffa0393b7e8176e269e46a37257f42fd1849f92",
                "md5": "3b6c36fdb3468bf220bcd6076cbaa514",
                "sha256": "28be521d69cbda1902a237d5849dd425fbaef6cf0206ce3150e2205bab91205c"
            },
            "downloads": -1,
            "filename": "kstreams-0.26.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b6c36fdb3468bf220bcd6076cbaa514",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 37265,
            "upload_time": "2025-01-06T13:43:44",
            "upload_time_iso_8601": "2025-01-06T13:43:44.074849Z",
            "url": "https://files.pythonhosted.org/packages/21/1a/faf826e3c5755222f2ae8ffa0393b7e8176e269e46a37257f42fd1849f92/kstreams-0.26.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e8cba99784f15f38082b37e0b27405f6377c3f6e69059e6f03441a5d2008778c",
                "md5": "730bd3ace3eab70de68e8261cf9d7125",
                "sha256": "5286a2d8a541693df89a18c7b6d1a2b939fed8a48ebeb25664ae6730e04c7502"
            },
            "downloads": -1,
            "filename": "kstreams-0.26.4.tar.gz",
            "has_sig": false,
            "md5_digest": "730bd3ace3eab70de68e8261cf9d7125",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 29467,
            "upload_time": "2025-01-06T13:43:45",
            "upload_time_iso_8601": "2025-01-06T13:43:45.345211Z",
            "url": "https://files.pythonhosted.org/packages/e8/cb/a99784f15f38082b37e0b27405f6377c3f6e69059e6f03441a5d2008778c/kstreams-0.26.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-06 13:43:45",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "kstreams"
}
        
Elapsed time: 0.41172s