Name | kvikio-cu12 JSON |
Version |
24.12.1
JSON |
| download |
home_page | None |
Summary | KvikIO - GPUDirect Storage |
upload_time | 2024-12-13 02:27:10 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache 2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# KvikIO: High Performance File IO
## Summary
KvikIO (pronounced "kuh-VICK-eye-oh", see [here](https://ordnet.dk/ddo_en/dict?query=kvik) for pronunciation of kvik) is a Python and C++ library for high performance file IO. It provides C++ and Python
bindings to [cuFile](https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html),
which enables [GPUDirect Storage (GDS)](https://developer.nvidia.com/blog/gpudirect-storage/).
KvikIO also works efficiently when GDS isn't available and can read/write both host and device data seamlessly.
### Features
* Object oriented API of [cuFile](https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html) with C++/Python exception handling.
* A Python [Zarr](https://zarr.readthedocs.io/en/stable/) backend for reading and writing GPU data to file seamlessly.
* Concurrent reads and writes using an internal thread pool.
* Non-blocking API.
* Transparently handles reads and writes to/from memory on both host and device.
* Provides Python bindings to [nvCOMP](https://github.com/NVIDIA/nvcomp).
### Documentation
* Python: <https://docs.rapids.ai/api/kvikio/nightly/>
* C++: <https://docs.rapids.ai/api/libkvikio/nightly/>
### Examples
#### Python
```python
import cupy
import kvikio
def main(path):
a = cupy.arange(100)
f = kvikio.CuFile(path, "w")
# Write whole array to file
f.write(a)
f.close()
b = cupy.empty_like(a)
f = kvikio.CuFile(path, "r")
# Read whole array from file
f.read(b)
assert all(a == b)
f.close()
# Use contexmanager
c = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
f.read(c)
assert all(a == c)
# Non-blocking read
d = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
future1 = f.pread(d[:50])
future2 = f.pread(d[50:], file_offset=d[:50].nbytes)
# Note: must wait for futures before exiting block
# at which point the file is closed.
future1.get() # Wait for first read
future2.get() # Wait for second read
assert all(a == d)
if __name__ == "__main__":
main("/tmp/kvikio-hello-world-file")
```
#### C++
```c++
#include <cstddef>
#include <future>
#include <cuda_runtime.h>
#include <kvikio/file_handle.hpp>
int main()
{
// Create two arrays `a` and `b`
constexpr std::size_t size = 100;
void *a = nullptr;
void *b = nullptr;
cudaMalloc(&a, size);
cudaMalloc(&b, size);
// Write `a` to file
kvikio::FileHandle fw("test-file", "w");
std::size_t written = fw.write(a, size);
fw.close();
// Read file into `b`
kvikio::FileHandle fr("test-file", "r");
std::size_t read = fr.read(b, size);
fr.close();
// Read file into `b` in parallel using 16 threads
kvikio::default_thread_pool::reset(16);
{
// FileHandles have RAII semantics
kvikio::FileHandle f("test-file", "r");
std::future<std::size_t> future = f.pread(b_dev, sizeof(a), 0); // Non-blocking
std::size_t read = future.get(); // Blocking
// Notice, `f` closes automatically on destruction.
}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "kvikio-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# KvikIO: High Performance File IO\n\n## Summary\n\nKvikIO (pronounced \"kuh-VICK-eye-oh\", see [here](https://ordnet.dk/ddo_en/dict?query=kvik) for pronunciation of kvik) is a Python and C++ library for high performance file IO. It provides C++ and Python\nbindings to [cuFile](https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html),\nwhich enables [GPUDirect Storage (GDS)](https://developer.nvidia.com/blog/gpudirect-storage/).\nKvikIO also works efficiently when GDS isn't available and can read/write both host and device data seamlessly.\n\n\n### Features\n\n* Object oriented API of [cuFile](https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html) with C++/Python exception handling.\n* A Python [Zarr](https://zarr.readthedocs.io/en/stable/) backend for reading and writing GPU data to file seamlessly.\n* Concurrent reads and writes using an internal thread pool.\n* Non-blocking API.\n* Transparently handles reads and writes to/from memory on both host and device.\n* Provides Python bindings to [nvCOMP](https://github.com/NVIDIA/nvcomp).\n\n\n### Documentation\n * Python: <https://docs.rapids.ai/api/kvikio/nightly/>\n * C++: <https://docs.rapids.ai/api/libkvikio/nightly/>\n\n\n### Examples\n\n#### Python\n```python\nimport cupy\nimport kvikio\n\ndef main(path):\n a = cupy.arange(100)\n f = kvikio.CuFile(path, \"w\")\n # Write whole array to file\n f.write(a)\n f.close()\n\n b = cupy.empty_like(a)\n f = kvikio.CuFile(path, \"r\")\n # Read whole array from file\n f.read(b)\n assert all(a == b)\n f.close()\n\n # Use contexmanager\n c = cupy.empty_like(a)\n with kvikio.CuFile(path, \"r\") as f:\n f.read(c)\n assert all(a == c)\n\n # Non-blocking read\n d = cupy.empty_like(a)\n with kvikio.CuFile(path, \"r\") as f:\n future1 = f.pread(d[:50])\n future2 = f.pread(d[50:], file_offset=d[:50].nbytes)\n # Note: must wait for futures before exiting block\n # at which point the file is closed.\n future1.get() # Wait for first read\n future2.get() # Wait for second read\n assert all(a == d)\n\n\nif __name__ == \"__main__\":\n main(\"/tmp/kvikio-hello-world-file\")\n```\n\n#### C++\n```c++\n#include <cstddef>\n#include <future>\n#include <cuda_runtime.h>\n#include <kvikio/file_handle.hpp>\n\nint main()\n{\n // Create two arrays `a` and `b`\n constexpr std::size_t size = 100;\n void *a = nullptr;\n void *b = nullptr;\n cudaMalloc(&a, size);\n cudaMalloc(&b, size);\n\n // Write `a` to file\n kvikio::FileHandle fw(\"test-file\", \"w\");\n std::size_t written = fw.write(a, size);\n fw.close();\n\n // Read file into `b`\n kvikio::FileHandle fr(\"test-file\", \"r\");\n std::size_t read = fr.read(b, size);\n fr.close();\n\n // Read file into `b` in parallel using 16 threads\n kvikio::default_thread_pool::reset(16);\n {\n // FileHandles have RAII semantics\n kvikio::FileHandle f(\"test-file\", \"r\");\n std::future<std::size_t> future = f.pread(b_dev, sizeof(a), 0); // Non-blocking\n std::size_t read = future.get(); // Blocking\n // Notice, `f` closes automatically on destruction.\n }\n}\n```\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "KvikIO - GPUDirect Storage",
"version": "24.12.1",
"project_urls": {
"Homepage": "https://github.com/rapidsai/kvikio"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d9eb135eaf12519b2d1c278ebce5c13c59c0407b01f20110a40cb8ee0371ee95",
"md5": "d5fc7a464aaef556ba99fa015eede037",
"sha256": "5551b1a0aaf842c8d08153cf726454bf53144ec2c24aad08a8be7e7e21e14274"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "d5fc7a464aaef556ba99fa015eede037",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 1026377,
"upload_time": "2024-12-13T02:27:10",
"upload_time_iso_8601": "2024-12-13T02:27:10.507680Z",
"url": "https://files.pythonhosted.org/packages/d9/eb/135eaf12519b2d1c278ebce5c13c59c0407b01f20110a40cb8ee0371ee95/kvikio_cu12-24.12.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a984fbd103b879ccfc20d324e542b2333e59881f8b83b3d761ba1dfd9371ff4c",
"md5": "97391a28be715b0c54db17e5b5dcedee",
"sha256": "c606760efc7395b3a2434e00e8b0c2961be41ca7b23a67d6613e9e87e591eb62"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "97391a28be715b0c54db17e5b5dcedee",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 1106238,
"upload_time": "2024-12-13T02:23:50",
"upload_time_iso_8601": "2024-12-13T02:23:50.370431Z",
"url": "https://files.pythonhosted.org/packages/a9/84/fbd103b879ccfc20d324e542b2333e59881f8b83b3d761ba1dfd9371ff4c/kvikio_cu12-24.12.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1c2b221123df249367598123d7959889b75bd3f1e497cfee5b64636359828dd0",
"md5": "aab089404f91a8f5d0822fba39184ce2",
"sha256": "8392e8a1bf41b5956aed75a6e84dedb9d6122c21ea389bcc4278995bbec991bb"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "aab089404f91a8f5d0822fba39184ce2",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 1024003,
"upload_time": "2024-12-13T02:26:15",
"upload_time_iso_8601": "2024-12-13T02:26:15.026155Z",
"url": "https://files.pythonhosted.org/packages/1c/2b/221123df249367598123d7959889b75bd3f1e497cfee5b64636359828dd0/kvikio_cu12-24.12.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1b598c3ef3ab20e5145bc41ed14b01c10115a70f8930d74bff69aa699ea80317",
"md5": "ea1e9ecf39b085d89a095965e7ce7561",
"sha256": "7dcab1e269bb6ba8a861a3b063dd66948a01e6fb3c1b6eb0197209f18349c619"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ea1e9ecf39b085d89a095965e7ce7561",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 1105645,
"upload_time": "2024-12-13T02:22:39",
"upload_time_iso_8601": "2024-12-13T02:22:39.388903Z",
"url": "https://files.pythonhosted.org/packages/1b/59/8c3ef3ab20e5145bc41ed14b01c10115a70f8930d74bff69aa699ea80317/kvikio_cu12-24.12.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f16ca3ded6aa230610eb13ee53b0830af6c7edbc2b682cc2920cd03b426f5e16",
"md5": "19b0a5ebb545f8933b0ad2d541951a4e",
"sha256": "d7e13dcebc8d7705225c6cad9f78d7be6110e3cfaff50e12318105bac29219b9"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "19b0a5ebb545f8933b0ad2d541951a4e",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 1006526,
"upload_time": "2024-12-13T02:25:47",
"upload_time_iso_8601": "2024-12-13T02:25:47.448489Z",
"url": "https://files.pythonhosted.org/packages/f1/6c/a3ded6aa230610eb13ee53b0830af6c7edbc2b682cc2920cd03b426f5e16/kvikio_cu12-24.12.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0471efbe89e847381bab63b4c672b752c9feba41b4a42cac1e5f37eaebedd9fe",
"md5": "55ed76d34d59bf26eaa8e61dd1bdba29",
"sha256": "a5a607d7c66acaf40e2fc40ad697ed80593e4f884201d539ba61c5eed457eb41"
},
"downloads": -1,
"filename": "kvikio_cu12-24.12.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "55ed76d34d59bf26eaa8e61dd1bdba29",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 1087589,
"upload_time": "2024-12-13T02:22:20",
"upload_time_iso_8601": "2024-12-13T02:22:20.786295Z",
"url": "https://files.pythonhosted.org/packages/04/71/efbe89e847381bab63b4c672b752c9feba41b4a42cac1e5f37eaebedd9fe/kvikio_cu12-24.12.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-13 02:27:10",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "kvikio",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "kvikio-cu12"
}