l2rpn-baselines


Namel2rpn-baselines JSON
Version 0.8.0 PyPI version JSON
download
home_pagehttps://github.com/rte-france/L2RPN_Baselines
SummaryL2RPN Baselines a repository to host baselines for l2rpn competitions.
upload_time2023-07-24 14:43:30
maintainer
docs_urlNone
authorBenjamin DONNOT
requires_python
licenseMPL
keywords ml powergrid optmization rl power-systems
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # L2RPN_Baselines
Repository hosting reference baselines for the [L2RPN challenge](https://l2rpn.chalearn.org/)

# Install 

## Requirements
`python3 >= 3.6`

## Instal from PyPI
```sh
pip3 install l2rpn_baselines
```
## Install from source
```sh
git clone https://github.com/rte-france/l2rpn-baselines.git
cd l2rpn-baselines
pip3 install -U .
cd ..
rm -rf l2rpn-baselines
```

# Contribute

We welcome contributions: see the [contribute guide](/CONTRIBUTE.md) for details.

# Get started with a baseline

Say you want to know how you compared with the "PPO_SB3" baseline implementation in this repository (for the
sake of this example).

## Train it (optional)
As no weights are provided for this baselines by default (yet), you will first need to train such a baseline:

```python
import grid2op
from l2rpn_baselines.PPO_SB3 import train
env = grid2op.make("l2rpn_case14_sandbox")
res = train(env, save_path="THE/PATH/TO/SAVE/IT", iterations=100)
```

You can have more information about extra argument of the "train" function in the 
[CONTRIBUTE](/CONTRIBUTE.md) file.

## Evaluate it
Once trained, you can reload it and evaluate its performance with the provided "evaluate" function:

```python
import grid2op
from l2rpn_baselines.PPO_SB3 import evaluate
env = grid2op.make("l2rpn_case14_sandbox")
res = evaluate(env, load_path="THE/PATH/TO/LOAD/IT", nb_episode=10)
```

You can have more information about extra argument of the "evaluate" function in the 
[CONTRIBUTE](/CONTRIBUTE.md) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rte-france/L2RPN_Baselines",
    "name": "l2rpn-baselines",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ML powergrid optmization RL power-systems",
    "author": "Benjamin DONNOT",
    "author_email": "benjamin.donnot@rte-france.com",
    "download_url": "https://files.pythonhosted.org/packages/a3/49/a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4/l2rpn_baselines-0.8.0.tar.gz",
    "platform": null,
    "description": "# L2RPN_Baselines\nRepository hosting reference baselines for the [L2RPN challenge](https://l2rpn.chalearn.org/)\n\n# Install \n\n## Requirements\n`python3 >= 3.6`\n\n## Instal from PyPI\n```sh\npip3 install l2rpn_baselines\n```\n## Install from source\n```sh\ngit clone https://github.com/rte-france/l2rpn-baselines.git\ncd l2rpn-baselines\npip3 install -U .\ncd ..\nrm -rf l2rpn-baselines\n```\n\n# Contribute\n\nWe welcome contributions: see the [contribute guide](/CONTRIBUTE.md) for details.\n\n# Get started with a baseline\n\nSay you want to know how you compared with the \"PPO_SB3\" baseline implementation in this repository (for the\nsake of this example).\n\n## Train it (optional)\nAs no weights are provided for this baselines by default (yet), you will first need to train such a baseline:\n\n```python\nimport grid2op\nfrom l2rpn_baselines.PPO_SB3 import train\nenv = grid2op.make(\"l2rpn_case14_sandbox\")\nres = train(env, save_path=\"THE/PATH/TO/SAVE/IT\", iterations=100)\n```\n\nYou can have more information about extra argument of the \"train\" function in the \n[CONTRIBUTE](/CONTRIBUTE.md) file.\n\n## Evaluate it\nOnce trained, you can reload it and evaluate its performance with the provided \"evaluate\" function:\n\n```python\nimport grid2op\nfrom l2rpn_baselines.PPO_SB3 import evaluate\nenv = grid2op.make(\"l2rpn_case14_sandbox\")\nres = evaluate(env, load_path=\"THE/PATH/TO/LOAD/IT\", nb_episode=10)\n```\n\nYou can have more information about extra argument of the \"evaluate\" function in the \n[CONTRIBUTE](/CONTRIBUTE.md) file.\n",
    "bugtrack_url": null,
    "license": "MPL",
    "summary": "L2RPN Baselines a repository to host baselines for l2rpn competitions.",
    "version": "0.8.0",
    "project_urls": {
        "Homepage": "https://github.com/rte-france/L2RPN_Baselines"
    },
    "split_keywords": [
        "ml",
        "powergrid",
        "optmization",
        "rl",
        "power-systems"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a349a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4",
                "md5": "ee8e938acc3851ae88a756c185ff6651",
                "sha256": "a251170c3352b856a9628901e68b2d4921e2b17e7ce7392d625b3327eded4da3"
            },
            "downloads": -1,
            "filename": "l2rpn_baselines-0.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ee8e938acc3851ae88a756c185ff6651",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 214815,
            "upload_time": "2023-07-24T14:43:30",
            "upload_time_iso_8601": "2023-07-24T14:43:30.521546Z",
            "url": "https://files.pythonhosted.org/packages/a3/49/a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4/l2rpn_baselines-0.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-24 14:43:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rte-france",
    "github_project": "L2RPN_Baselines",
    "github_not_found": true,
    "lcname": "l2rpn-baselines"
}
        
Elapsed time: 0.86025s