# L2RPN_Baselines
Repository hosting reference baselines for the [L2RPN challenge](https://l2rpn.chalearn.org/)
# Install
## Requirements
`python3 >= 3.6`
## Instal from PyPI
```sh
pip3 install l2rpn_baselines
```
## Install from source
```sh
git clone https://github.com/rte-france/l2rpn-baselines.git
cd l2rpn-baselines
pip3 install -U .
cd ..
rm -rf l2rpn-baselines
```
# Contribute
We welcome contributions: see the [contribute guide](/CONTRIBUTE.md) for details.
# Get started with a baseline
Say you want to know how you compared with the "PPO_SB3" baseline implementation in this repository (for the
sake of this example).
## Train it (optional)
As no weights are provided for this baselines by default (yet), you will first need to train such a baseline:
```python
import grid2op
from l2rpn_baselines.PPO_SB3 import train
env = grid2op.make("l2rpn_case14_sandbox")
res = train(env, save_path="THE/PATH/TO/SAVE/IT", iterations=100)
```
You can have more information about extra argument of the "train" function in the
[CONTRIBUTE](/CONTRIBUTE.md) file.
## Evaluate it
Once trained, you can reload it and evaluate its performance with the provided "evaluate" function:
```python
import grid2op
from l2rpn_baselines.PPO_SB3 import evaluate
env = grid2op.make("l2rpn_case14_sandbox")
res = evaluate(env, load_path="THE/PATH/TO/LOAD/IT", nb_episode=10)
```
You can have more information about extra argument of the "evaluate" function in the
[CONTRIBUTE](/CONTRIBUTE.md) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/rte-france/L2RPN_Baselines",
"name": "l2rpn-baselines",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "ML powergrid optmization RL power-systems",
"author": "Benjamin DONNOT",
"author_email": "benjamin.donnot@rte-france.com",
"download_url": "https://files.pythonhosted.org/packages/a3/49/a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4/l2rpn_baselines-0.8.0.tar.gz",
"platform": null,
"description": "# L2RPN_Baselines\nRepository hosting reference baselines for the [L2RPN challenge](https://l2rpn.chalearn.org/)\n\n# Install \n\n## Requirements\n`python3 >= 3.6`\n\n## Instal from PyPI\n```sh\npip3 install l2rpn_baselines\n```\n## Install from source\n```sh\ngit clone https://github.com/rte-france/l2rpn-baselines.git\ncd l2rpn-baselines\npip3 install -U .\ncd ..\nrm -rf l2rpn-baselines\n```\n\n# Contribute\n\nWe welcome contributions: see the [contribute guide](/CONTRIBUTE.md) for details.\n\n# Get started with a baseline\n\nSay you want to know how you compared with the \"PPO_SB3\" baseline implementation in this repository (for the\nsake of this example).\n\n## Train it (optional)\nAs no weights are provided for this baselines by default (yet), you will first need to train such a baseline:\n\n```python\nimport grid2op\nfrom l2rpn_baselines.PPO_SB3 import train\nenv = grid2op.make(\"l2rpn_case14_sandbox\")\nres = train(env, save_path=\"THE/PATH/TO/SAVE/IT\", iterations=100)\n```\n\nYou can have more information about extra argument of the \"train\" function in the \n[CONTRIBUTE](/CONTRIBUTE.md) file.\n\n## Evaluate it\nOnce trained, you can reload it and evaluate its performance with the provided \"evaluate\" function:\n\n```python\nimport grid2op\nfrom l2rpn_baselines.PPO_SB3 import evaluate\nenv = grid2op.make(\"l2rpn_case14_sandbox\")\nres = evaluate(env, load_path=\"THE/PATH/TO/LOAD/IT\", nb_episode=10)\n```\n\nYou can have more information about extra argument of the \"evaluate\" function in the \n[CONTRIBUTE](/CONTRIBUTE.md) file.\n",
"bugtrack_url": null,
"license": "MPL",
"summary": "L2RPN Baselines a repository to host baselines for l2rpn competitions.",
"version": "0.8.0",
"project_urls": {
"Homepage": "https://github.com/rte-france/L2RPN_Baselines"
},
"split_keywords": [
"ml",
"powergrid",
"optmization",
"rl",
"power-systems"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a349a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4",
"md5": "ee8e938acc3851ae88a756c185ff6651",
"sha256": "a251170c3352b856a9628901e68b2d4921e2b17e7ce7392d625b3327eded4da3"
},
"downloads": -1,
"filename": "l2rpn_baselines-0.8.0.tar.gz",
"has_sig": false,
"md5_digest": "ee8e938acc3851ae88a756c185ff6651",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 214815,
"upload_time": "2023-07-24T14:43:30",
"upload_time_iso_8601": "2023-07-24T14:43:30.521546Z",
"url": "https://files.pythonhosted.org/packages/a3/49/a23cd32fd384e4c1c6ea94ba7a5af3f0494a626fd1b11deadc24ecac5fa4/l2rpn_baselines-0.8.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-24 14:43:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rte-france",
"github_project": "L2RPN_Baselines",
"github_not_found": true,
"lcname": "l2rpn-baselines"
}