# LabelMe to Yolo
<div align="center">
[![Downloads](https://static.pepy.tech/personalized-badge/labelme-to-yolo?period=month&units=international_system&left_color=grey&right_color=blue&left_text=PyPi%20Downloads)](https://pepy.tech/project/labelme-to-yolo)
[![Stars](https://img.shields.io/github/stars/Tlaloc-Es/labelme-to-yolo?color=yellow&style=flat)](https://github.com/Tlaloc-Es/labelme-to-yolo/stargazers)
</div>
Convert [LabelMe](https://github.com/wkentaro/labelme) format into [YoloV7](https://github.com/WongKinYiu/yolov7) format for instance segmentation.
## Installation [![PyPI](https://img.shields.io/pypi/v/labelme2yolo.svg)](https://pypi.org/project/labelme2yolo/)
You can install `labelme2yolo` from [Pypi](https://pypi.org/project/labelme-to-yolo/). It's going to install the library itself and its prerequisites as well.
```bash
pip install labelme2yolo
```
You can install `labelme2yolo` from its source code.
```bash
git clone https://github.com/Tlaloc-Es/labelme-to-yolo.git
cd labelme2yolo
pip install -e .
```
## Usage
First of all, make your dataset with LabelMe, after that call to the following command
`labelme2yolo --source-path /labelme/dataset --output-path /another/path`
The arguments are:
- `--source-path`: That indicates the path where are the json output of LabelMe and their images, both will have been in the same folder
- `--output-path`: The path where you will save the converted files and a copy of the images following the yolov7 folder estructure
### Expected output
If you execute the following command:
`labelme2yolo --source-path /labelme/dataset --output-path /another/datasets`
You will get something like this
```bash
datasets
├── images
│ ├── train
│ │ ├── img_1.jpg
│ │ ├── img_2.jpg
│ │ ├── img_3.jpg
│ │ ├── img_4.jpg
│ │ └── img_5.jpg
│ └── val
│ ├── img_6.jpg
│ └── img_7.jpg
├── labels
│ ├── train
│ │ ├── img_1.txt
│ │ ├── img_2.txt
│ │ ├── img_3.txt
│ │ ├── img_4.txt
│ │ └── img_5.txt
│ └── val
│ ├── img_6.txt
│ └── img_7.txt
├── labels.txt
├── test.txt
└── train.txt
```
## Donation
If you want to contribute you can make a donation at https://www.buymeacoffee.com/tlaloc, thanks in advance
Raw data
{
"_id": null,
"home_page": "https://github.com/Tlaloc-Es/labelme-to-yolo",
"name": "labelme-to-yolo",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "Tlaloc-Es",
"author_email": "dev@tlaloc-es.com",
"download_url": "https://files.pythonhosted.org/packages/67/c4/0c74ecf48344700078ac0420ab0a988ace85c665122afdd8c5ad66ed8021/labelme_to_yolo-0.2.0.tar.gz",
"platform": null,
"description": "# LabelMe to Yolo\n\n<div align=\"center\">\n\n[![Downloads](https://static.pepy.tech/personalized-badge/labelme-to-yolo?period=month&units=international_system&left_color=grey&right_color=blue&left_text=PyPi%20Downloads)](https://pepy.tech/project/labelme-to-yolo)\n[![Stars](https://img.shields.io/github/stars/Tlaloc-Es/labelme-to-yolo?color=yellow&style=flat)](https://github.com/Tlaloc-Es/labelme-to-yolo/stargazers)\n\n</div>\n\nConvert [LabelMe](https://github.com/wkentaro/labelme) format into [YoloV7](https://github.com/WongKinYiu/yolov7) format for instance segmentation.\n\n## Installation [![PyPI](https://img.shields.io/pypi/v/labelme2yolo.svg)](https://pypi.org/project/labelme2yolo/)\n\nYou can install `labelme2yolo` from [Pypi](https://pypi.org/project/labelme-to-yolo/). It's going to install the library itself and its prerequisites as well.\n\n```bash\npip install labelme2yolo\n```\n\nYou can install `labelme2yolo` from its source code.\n\n```bash\ngit clone https://github.com/Tlaloc-Es/labelme-to-yolo.git\ncd labelme2yolo\npip install -e .\n```\n\n## Usage\n\nFirst of all, make your dataset with LabelMe, after that call to the following command\n\n`labelme2yolo --source-path /labelme/dataset --output-path /another/path`\n\nThe arguments are:\n\n- `--source-path`: That indicates the path where are the json output of LabelMe and their images, both will have been in the same folder\n- `--output-path`: The path where you will save the converted files and a copy of the images following the yolov7 folder estructure\n\n### Expected output\n\nIf you execute the following command:\n\n`labelme2yolo --source-path /labelme/dataset --output-path /another/datasets`\n\nYou will get something like this\n\n```bash\ndatasets\n\u251c\u2500\u2500 images\n\u2502 \u251c\u2500\u2500 train\n\u2502 \u2502 \u251c\u2500\u2500 img_1.jpg\n\u2502 \u2502 \u251c\u2500\u2500 img_2.jpg\n\u2502 \u2502 \u251c\u2500\u2500 img_3.jpg\n\u2502 \u2502 \u251c\u2500\u2500 img_4.jpg\n\u2502 \u2502 \u2514\u2500\u2500 img_5.jpg\n\u2502 \u2514\u2500\u2500 val\n\u2502 \u251c\u2500\u2500 img_6.jpg\n\u2502 \u2514\u2500\u2500 img_7.jpg\n\u251c\u2500\u2500 labels\n\u2502 \u251c\u2500\u2500 train\n\u2502 \u2502 \u251c\u2500\u2500 img_1.txt\n\u2502 \u2502 \u251c\u2500\u2500 img_2.txt\n\u2502 \u2502 \u251c\u2500\u2500 img_3.txt\n\u2502 \u2502 \u251c\u2500\u2500 img_4.txt\n\u2502 \u2502 \u2514\u2500\u2500 img_5.txt\n\u2502 \u2514\u2500\u2500 val\n\u2502 \u251c\u2500\u2500 img_6.txt\n\u2502 \u2514\u2500\u2500 img_7.txt\n\u251c\u2500\u2500 labels.txt\n\u251c\u2500\u2500 test.txt\n\u2514\u2500\u2500 train.txt\n```\n\n## Donation\n\nIf you want to contribute you can make a donation at https://www.buymeacoffee.com/tlaloc, thanks in advance\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A tool to convert LabelMe dataset annotations into YOLO format for instance segmentation.",
"version": "0.2.0",
"project_urls": {
"Homepage": "https://github.com/Tlaloc-Es/labelme-to-yolo",
"Repository": "https://github.com/Tlaloc-Es/labelme-to-yolo"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "00263b14157e760b7128a67680c7686862ee0772891d4f6220be127529b45515",
"md5": "d779e096ea653daf221cf332214a614b",
"sha256": "5e2913bba03b496fedaf614c1c74971061bd603edee7f529abdb1a102d6ab936"
},
"downloads": -1,
"filename": "labelme_to_yolo-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d779e096ea653daf221cf332214a614b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 5495,
"upload_time": "2024-12-29T19:23:45",
"upload_time_iso_8601": "2024-12-29T19:23:45.750248Z",
"url": "https://files.pythonhosted.org/packages/00/26/3b14157e760b7128a67680c7686862ee0772891d4f6220be127529b45515/labelme_to_yolo-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "67c40c74ecf48344700078ac0420ab0a988ace85c665122afdd8c5ad66ed8021",
"md5": "6a0ccc25a52ff660ff8026ef379bbb1b",
"sha256": "578c656663a6499c945c198eda4595106e65642ca179456bdfdd8779a2e4181f"
},
"downloads": -1,
"filename": "labelme_to_yolo-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "6a0ccc25a52ff660ff8026ef379bbb1b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4585,
"upload_time": "2024-12-29T19:23:47",
"upload_time_iso_8601": "2024-12-29T19:23:47.756562Z",
"url": "https://files.pythonhosted.org/packages/67/c4/0c74ecf48344700078ac0420ab0a988ace85c665122afdd8c5ad66ed8021/labelme_to_yolo-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-29 19:23:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Tlaloc-Es",
"github_project": "labelme-to-yolo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "labelme-to-yolo"
}