# lambeq
[![lambeq logo](https://cqcl.github.io/lambeq-docs/_static/lambeq_logo.png)](//cqcl.github.io/lambeq-docs)
![Build status](https://github.com/CQCL/lambeq/actions/workflows/build_test.yml/badge.svg)
[![License](https://img.shields.io/github/license/CQCL/lambeq)](LICENSE)
[![PyPI version](https://img.shields.io/pypi/v/lambeq)](//pypi.org/project/lambeq)
[![PyPI downloads](https://img.shields.io/pypi/dm/lambeq)](//pypi.org/project/lambeq)
[![arXiv](https://img.shields.io/badge/arXiv-2110.04236-green)](//arxiv.org/abs/2110.04236)
## About
lambeq is a toolkit for quantum natural language processing (QNLP).
- Documentation: https://cqcl.github.io/lambeq-docs/
- User support: <lambeq-support@cambridgequantum.com>
- Contributions: Please read [our guide](https://cqcl.github.io/lambeq-docs/CONTRIBUTING.html).
- If you want to subscribe to lambeq's mailing list, let us know by sending an email to <lambeq-support@cambridgequantum.com>.
## Getting started
### Prerequisites
- Python 3.10+
### Installation
lambeq can be installed with the command:
```bash
pip install lambeq
```
The default installation of lambeq includes Bobcat parser, a state-of-the-art statistical parser (see [related paper](https://arxiv.org/abs/2109.10044)) fully integrated with the toolkit.
To install lambeq with optional dependencies for extra features, run:
```bash
pip install lambeq[extras]
```
To enable DepCCG support, you will need to install the external parser separately.
---
**Note:** The DepCCG-related functionality is no longer actively supported in `lambeq`, and may not work as expected. We strongly recommend using the default Bobcat parser which comes as part of `lambeq`.
---
If you still want to use DepCCG, for example because you plan to apply ``lambeq`` on Japanese, you can install DepCCG separately following the instructions on the [DepCCG homepage](//github.com/masashi-y/depccg). After installing DepCCG, you can download its model by using the script provided in the `contrib` folder of this repository:
```bash
python contrib/download_depccg_model.py
```
## Usage
The [docs/examples](//github.com/CQCL/lambeq-docs/tree/main/docs/examples)
directory in lambeq's [documentation repository](https://github.com/CQCL/lambeq-docs) contains notebooks demonstrating usage of the various tools in lambeq.
Example - parsing a sentence into a diagram (see
[docs/examples/parser.ipynb](//github.com/CQCL/lambeq-docs/blob/main/docs/examples/parser.ipynb)):
```python
from lambeq import BobcatParser
parser = BobcatParser()
diagram = parser.sentence2diagram('This is a test sentence')
diagram.draw()
```
## Testing
Run all tests with the command:
```bash
pytest
```
Note: if you have installed lambeq in a virtual environment, remember to
install pytest in the same environment using pip.
## License
Distributed under the Apache 2.0 license. See [`LICENSE`](LICENSE) for
more details.
## Citation
If you wish to attribute our work, please cite
[the accompanying paper](//arxiv.org/abs/2110.04236):
```
@article{kartsaklis2021lambeq,
title={lambeq: {A}n {E}fficient {H}igh-{L}evel {P}ython {L}ibrary for {Q}uantum {NLP}},
author={Dimitri Kartsaklis and Ian Fan and Richie Yeung and Anna Pearson and Robin Lorenz and Alexis Toumi and Giovanni de Felice and Konstantinos Meichanetzidis and Stephen Clark and Bob Coecke},
year={2021},
journal={arXiv preprint arXiv:2110.04236},
}
```
Raw data
{
"_id": null,
"home_page": "https://cqcl.github.io/lambeq-docs",
"name": "lambeq",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "category theory, ccg, circuits, combinatory categorial grammar, diagrams, discocat, language, linguistics, natural language processing, nlp, qnlp, quantum, quantum computing, quantum natural language processing, quantum nlp",
"author": "Cambridge Quantum QNLP team",
"author_email": "lambeq-support@cambridgequantum.com",
"download_url": "https://files.pythonhosted.org/packages/d0/cb/ec8bf15ac0e5a91d462e2bfcd7afb0b044810d0977cf1c7baf77944e7a1b/lambeq-0.4.3.tar.gz",
"platform": null,
"description": "# lambeq\n\n[![lambeq logo](https://cqcl.github.io/lambeq-docs/_static/lambeq_logo.png)](//cqcl.github.io/lambeq-docs)\n\n![Build status](https://github.com/CQCL/lambeq/actions/workflows/build_test.yml/badge.svg)\n[![License](https://img.shields.io/github/license/CQCL/lambeq)](LICENSE)\n[![PyPI version](https://img.shields.io/pypi/v/lambeq)](//pypi.org/project/lambeq)\n[![PyPI downloads](https://img.shields.io/pypi/dm/lambeq)](//pypi.org/project/lambeq)\n[![arXiv](https://img.shields.io/badge/arXiv-2110.04236-green)](//arxiv.org/abs/2110.04236)\n\n## About\n\nlambeq is a toolkit for quantum natural language processing (QNLP).\n\n- Documentation: https://cqcl.github.io/lambeq-docs/\n- User support: <lambeq-support@cambridgequantum.com>\n- Contributions: Please read [our guide](https://cqcl.github.io/lambeq-docs/CONTRIBUTING.html).\n- If you want to subscribe to lambeq's mailing list, let us know by sending an email to <lambeq-support@cambridgequantum.com>.\n\n## Getting started\n\n### Prerequisites\n\n- Python 3.10+\n\n### Installation\n\nlambeq can be installed with the command:\n\n```bash\npip install lambeq\n```\n\nThe default installation of lambeq includes Bobcat parser, a state-of-the-art statistical parser (see [related paper](https://arxiv.org/abs/2109.10044)) fully integrated with the toolkit.\n\nTo install lambeq with optional dependencies for extra features, run:\n\n```bash\npip install lambeq[extras]\n```\n\nTo enable DepCCG support, you will need to install the external parser separately.\n\n---\n**Note:** The DepCCG-related functionality is no longer actively supported in `lambeq`, and may not work as expected. We strongly recommend using the default Bobcat parser which comes as part of `lambeq`.\n\n---\n\nIf you still want to use DepCCG, for example because you plan to apply ``lambeq`` on Japanese, you can install DepCCG separately following the instructions on the [DepCCG homepage](//github.com/masashi-y/depccg). After installing DepCCG, you can download its model by using the script provided in the `contrib` folder of this repository:\n\n```bash\npython contrib/download_depccg_model.py\n```\n\n## Usage\n\nThe [docs/examples](//github.com/CQCL/lambeq-docs/tree/main/docs/examples)\ndirectory in lambeq's [documentation repository](https://github.com/CQCL/lambeq-docs) contains notebooks demonstrating usage of the various tools in lambeq.\n\nExample - parsing a sentence into a diagram (see\n[docs/examples/parser.ipynb](//github.com/CQCL/lambeq-docs/blob/main/docs/examples/parser.ipynb)):\n\n```python\nfrom lambeq import BobcatParser\n\nparser = BobcatParser()\ndiagram = parser.sentence2diagram('This is a test sentence')\ndiagram.draw()\n```\n\n## Testing\n\nRun all tests with the command:\n\n```bash\npytest\n```\n\nNote: if you have installed lambeq in a virtual environment, remember to\ninstall pytest in the same environment using pip.\n\n## License\n\nDistributed under the Apache 2.0 license. See [`LICENSE`](LICENSE) for\nmore details.\n\n## Citation\n\nIf you wish to attribute our work, please cite\n[the accompanying paper](//arxiv.org/abs/2110.04236):\n\n```\n@article{kartsaklis2021lambeq,\n title={lambeq: {A}n {E}fficient {H}igh-{L}evel {P}ython {L}ibrary for {Q}uantum {NLP}},\n author={Dimitri Kartsaklis and Ian Fan and Richie Yeung and Anna Pearson and Robin Lorenz and Alexis Toumi and Giovanni de Felice and Konstantinos Meichanetzidis and Stephen Clark and Bob Coecke},\n year={2021},\n journal={arXiv preprint arXiv:2110.04236},\n}\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "A QNLP toolkit",
"version": "0.4.3",
"project_urls": {
"Download": "https://pypi.org/project/lambeq",
"Homepage": "https://cqcl.github.io/lambeq-docs",
"Source Code": "https://github.com/CQCL/lambeq"
},
"split_keywords": [
"category theory",
" ccg",
" circuits",
" combinatory categorial grammar",
" diagrams",
" discocat",
" language",
" linguistics",
" natural language processing",
" nlp",
" qnlp",
" quantum",
" quantum computing",
" quantum natural language processing",
" quantum nlp"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "63a7562ce1a102ea3cb1dfaa50a86741fbf5d56a583c0fcbdc3da47fa504c5c4",
"md5": "5b84c40a4da55a37ca295563febb57d1",
"sha256": "0070220f3feb4b64feb099d9cada7d83764446527d56232d7a82d37f88c21507"
},
"downloads": -1,
"filename": "lambeq-0.4.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5b84c40a4da55a37ca295563febb57d1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 210304,
"upload_time": "2024-09-02T14:16:06",
"upload_time_iso_8601": "2024-09-02T14:16:06.146117Z",
"url": "https://files.pythonhosted.org/packages/63/a7/562ce1a102ea3cb1dfaa50a86741fbf5d56a583c0fcbdc3da47fa504c5c4/lambeq-0.4.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0cbec8bf15ac0e5a91d462e2bfcd7afb0b044810d0977cf1c7baf77944e7a1b",
"md5": "b268713b40445aa4f045183cc341a7f0",
"sha256": "84ab792eb49797bd7594288ff546535078c39f44311259db1700e54a7fbdf070"
},
"downloads": -1,
"filename": "lambeq-0.4.3.tar.gz",
"has_sig": false,
"md5_digest": "b268713b40445aa4f045183cc341a7f0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 236376,
"upload_time": "2024-09-02T14:16:08",
"upload_time_iso_8601": "2024-09-02T14:16:08.268469Z",
"url": "https://files.pythonhosted.org/packages/d0/cb/ec8bf15ac0e5a91d462e2bfcd7afb0b044810d0977cf1c7baf77944e7a1b/lambeq-0.4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-02 14:16:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "CQCL",
"github_project": "lambeq",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "lambeq"
}