lamindb


Namelamindb JSON
Version 1.9.1 PyPI version JSON
download
home_pageNone
SummaryA data framework for biology.
upload_time2025-07-23 08:26:03
maintainerNone
docs_urlNone
authorNone
requires_python<3.14,>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Stars](https://img.shields.io/github/stars/laminlabs/lamindb?logo=GitHub)](https://github.com/laminlabs/lamindb)
[![codecov](https://codecov.io/gh/laminlabs/lamindb/branch/main/graph/badge.svg?token=VKMRJ7OWR3)](https://codecov.io/gh/laminlabs/lamindb)
[![Docs](https://img.shields.io/badge/docs-humans-yellow)](https://docs.lamin.ai)
[![DocsLLMs](https://img.shields.io/badge/docs-LLMs-yellow)](https://docs.lamin.ai/summary.md)
[![pypi](https://img.shields.io/pypi/v/lamindb?color=blue&label=pypi%20package)](https://pypi.org/project/lamindb)
[![PyPI Downloads](https://img.shields.io/pepy/dt/lamindb?logo=pypi)](https://pepy.tech/project/lamindb)

# LaminDB - A data framework for biology

<!-- first two sentences sync from preface.md -->

LaminDB is an open-source data framework to enable learning at scale in computational biology.
It lets you track data transformations, validate & annotate datasets, and query a built-in database for biological metadata & data structures.

## Setup

<!-- copied from quick-setup-lamindb.md -->

Install the `lamindb` Python package:

```shell
pip install 'lamindb[jupyter,bionty]'  # support notebooks & biological ontologies
```

Create a LaminDB instance:

```shell
lamin init --storage ./quickstart-data  # or s3://my-bucket, gs://my-bucket
```

Or if you have write access to an instance, connect to it:

```shell
lamin connect account/name
```

## Quickstart

<!-- copied from preface.md -->

Track a script or notebook run with source code, inputs, outputs, logs, and environment.

<!-- copied from py-quickstart.py -->

```python
import lamindb as ln

ln.track()  # track a run
open("sample.fasta", "w").write(">seq1\nACGT\n")
ln.Artifact("sample.fasta", key="sample.fasta").save()  # create an artifact
ln.finish()  # finish the run
```

<!-- from here on, slight deviation from preface.md, where all this is treated in the walk through in more depth -->

Running this code inside a script via `python create-fasta.py` produces the following data lineage.

```python
artifact = ln.Artifact.get(key="sample.fasta")  # query artifact by key
artifact.view_lineage()
```

<img src="https://lamin-site-assets.s3.amazonaws.com/.lamindb/EkQATsQL5wqC95Wj0003.png" width="220">

You'll know how that artifact was created.

```python
artifact.describe()
```

<img src="https://lamin-site-assets.s3.amazonaws.com/.lamindb/BOTCBgHDAvwglN3U0001.png" width="850">

Conversely, you can query artifacts by the script that created them.

```python
ln.Artifact.get(transform__key="create-fasta.py")  # query artifact by transform key
```

Data lineage is just one type of metadata to help analysis and model training through queries, validation, and annotation. Here is a more [comprehensive example](https://lamin.ai/laminlabs/lamindata/artifact/fgKBV8qdSnbIga0i).

<img src="https://lamin-site-assets.s3.amazonaws.com/.lamindb/6sofuDVvTANB0f480001.png" width="850">

## Docs

Copy [summary.md](https://docs.lamin.ai/summary.md) into an LLM chat and let AI explain or read the [docs](https://docs.lamin.ai).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "lamindb",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Lamin Labs <open-source@lamin.ai>",
    "download_url": "https://files.pythonhosted.org/packages/8e/b4/7c605bc6180838a03fbae73f80190c0ffa98291917a9b9ea03c4e6d480d3/lamindb-1.9.1.tar.gz",
    "platform": null,
    "description": "[![Stars](https://img.shields.io/github/stars/laminlabs/lamindb?logo=GitHub)](https://github.com/laminlabs/lamindb)\n[![codecov](https://codecov.io/gh/laminlabs/lamindb/branch/main/graph/badge.svg?token=VKMRJ7OWR3)](https://codecov.io/gh/laminlabs/lamindb)\n[![Docs](https://img.shields.io/badge/docs-humans-yellow)](https://docs.lamin.ai)\n[![DocsLLMs](https://img.shields.io/badge/docs-LLMs-yellow)](https://docs.lamin.ai/summary.md)\n[![pypi](https://img.shields.io/pypi/v/lamindb?color=blue&label=pypi%20package)](https://pypi.org/project/lamindb)\n[![PyPI Downloads](https://img.shields.io/pepy/dt/lamindb?logo=pypi)](https://pepy.tech/project/lamindb)\n\n# LaminDB - A data framework for biology\n\n<!-- first two sentences sync from preface.md -->\n\nLaminDB is an open-source data framework to enable learning at scale in computational biology.\nIt lets you track data transformations, validate & annotate datasets, and query a built-in database for biological metadata & data structures.\n\n## Setup\n\n<!-- copied from quick-setup-lamindb.md -->\n\nInstall the `lamindb` Python package:\n\n```shell\npip install 'lamindb[jupyter,bionty]'  # support notebooks & biological ontologies\n```\n\nCreate a LaminDB instance:\n\n```shell\nlamin init --storage ./quickstart-data  # or s3://my-bucket, gs://my-bucket\n```\n\nOr if you have write access to an instance, connect to it:\n\n```shell\nlamin connect account/name\n```\n\n## Quickstart\n\n<!-- copied from preface.md -->\n\nTrack a script or notebook run with source code, inputs, outputs, logs, and environment.\n\n<!-- copied from py-quickstart.py -->\n\n```python\nimport lamindb as ln\n\nln.track()  # track a run\nopen(\"sample.fasta\", \"w\").write(\">seq1\\nACGT\\n\")\nln.Artifact(\"sample.fasta\", key=\"sample.fasta\").save()  # create an artifact\nln.finish()  # finish the run\n```\n\n<!-- from here on, slight deviation from preface.md, where all this is treated in the walk through in more depth -->\n\nRunning this code inside a script via `python create-fasta.py` produces the following data lineage.\n\n```python\nartifact = ln.Artifact.get(key=\"sample.fasta\")  # query artifact by key\nartifact.view_lineage()\n```\n\n<img src=\"https://lamin-site-assets.s3.amazonaws.com/.lamindb/EkQATsQL5wqC95Wj0003.png\" width=\"220\">\n\nYou'll know how that artifact was created.\n\n```python\nartifact.describe()\n```\n\n<img src=\"https://lamin-site-assets.s3.amazonaws.com/.lamindb/BOTCBgHDAvwglN3U0001.png\" width=\"850\">\n\nConversely, you can query artifacts by the script that created them.\n\n```python\nln.Artifact.get(transform__key=\"create-fasta.py\")  # query artifact by transform key\n```\n\nData lineage is just one type of metadata to help analysis and model training through queries, validation, and annotation. Here is a more [comprehensive example](https://lamin.ai/laminlabs/lamindata/artifact/fgKBV8qdSnbIga0i).\n\n<img src=\"https://lamin-site-assets.s3.amazonaws.com/.lamindb/6sofuDVvTANB0f480001.png\" width=\"850\">\n\n## Docs\n\nCopy [summary.md](https://docs.lamin.ai/summary.md) into an LLM chat and let AI explain or read the [docs](https://docs.lamin.ai).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A data framework for biology.",
    "version": "1.9.1",
    "project_urls": {
        "Home": "https://github.com/laminlabs/lamindb"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d29e6e0206d28ff5078c879be3a41e67facdb6c5ac0e260881851faa7bfa5e47",
                "md5": "af61e989de806b4a686112454a36aa3b",
                "sha256": "43971b429163fb75d6752adb507807f7c70260d82577a0fe52cefb11f3d05fdc"
            },
            "downloads": -1,
            "filename": "lamindb-1.9.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "af61e989de806b4a686112454a36aa3b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.10",
            "size": 339364,
            "upload_time": "2025-07-23T08:26:00",
            "upload_time_iso_8601": "2025-07-23T08:26:00.381115Z",
            "url": "https://files.pythonhosted.org/packages/d2/9e/6e0206d28ff5078c879be3a41e67facdb6c5ac0e260881851faa7bfa5e47/lamindb-1.9.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8eb47c605bc6180838a03fbae73f80190c0ffa98291917a9b9ea03c4e6d480d3",
                "md5": "a29700d2e8aa0594221e5dec5e5155e2",
                "sha256": "78b266c198848959cca562b9be8399bd79ca387998bf9bf536bab53514cc79f7"
            },
            "downloads": -1,
            "filename": "lamindb-1.9.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a29700d2e8aa0594221e5dec5e5155e2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.10",
            "size": 416193,
            "upload_time": "2025-07-23T08:26:03",
            "upload_time_iso_8601": "2025-07-23T08:26:03.929306Z",
            "url": "https://files.pythonhosted.org/packages/8e/b4/7c605bc6180838a03fbae73f80190c0ffa98291917a9b9ea03c4e6d480d3/lamindb-1.9.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-23 08:26:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "laminlabs",
    "github_project": "lamindb",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "lamindb"
}
        
Elapsed time: 2.27797s