# LanceOTron CLI
[![PyPI version](https://badge.fury.io/py/lanceotron.svg)](https://badge.fury.io/py/lanceotron) [![Downloads](https://pepy.tech/badge/lanceotron)](https://pepy.tech/project/lanceotron) [![CircleCI](https://circleci.com/gh/Chris1221/lanceotron/tree/main.svg?style=shield)](https://circleci.com/gh/Chris1221/lanceotron/tree/main) [![codecov](https://codecov.io/gh/Chris1221/lanceotron/branch/main/graph/badge.svg?token=yhL3YI00UP)](https://codecov.io/gh/Chris1221/lanceotron)
A bare-bones interface to the trained LanceOTron (LoT) model from the command line.
## Installation
```{sh}
pip install lanceotron
```
### Local installation
1. Clone the repository.
2. Install dependencies with pip.
3. Install the package.
4. Run tests to ensure that everything is working.
```{sh}
git clone git@github.com:Chris1221/lanceotron.git; cd lanceotron # Step 1
pip install -r requirements.txt # Step 2
pip install -e . # Step 3
python -m unittest
```
## Usage
To see available commands, use the `--help` flag.
```
lanceotron --help
```
## Call Peaks
To call peaks from a bigWig track, use the `callPeaks` command.
| Option | Description | Default |
|-----------------|--------------------------------------------------------|---------|
| file | BigWig Track to analyse | |
| -t, --threshold | Threshold for selecting candidate peaks | 4 |
| -w, --window | Window size for rolling mean to select candidate peaks | 400 |
| -f, --folder | Output folder | "./" |
| --skipheader | Skip writing the header | False |
## Call Peaks with Input
To call peaks from a bigWig track with an input file, use the `callPeaks_Input` command.
| Option | Description | Default |
|-----------------|--------------------------------------------------------|---------|
| file | BigWig track to analyse | |
| -i, --input | Control input track to calculate significance of peaks | |
| -t, --threshold | Threshold for selecting candidate peaks | 4 |
| -w, --window | Window size for rolling mean to select candidate peaks | 400 |
| -f, --folder | Output folder | "./" |
| --skipheader | Skip writing the header | False |
## Score a Bed file
To score the peaks in an existing Bed file, use the `scoreBed` command.
| Option | Description | Default |
|-----------------|--------------------------------------------------------|---------|
| file | BigWig Track to analyse | |
| -b, --bed | Bed file of regions to be scored | |
| -f, --folder | Output folder | "./" |
| --skipheader | Skip writing the header | False |
## Examples
There is a basic bigWig file included in the `test` subdirectory. To try out the caller, execute it on this file.
```sh
lanceotron callPeaks test/chr22.bw -f output_folder
```
## Citation
```{bibtex}
@article {Hentges2021.01.25.428108,
author = {Hentges, Lance D. and Sergeant, Martin J. and Downes, Damien J. and Hughes, Jim R. and Taylor, Stephen},
title = {LanceOtron: a deep learning peak caller for ATAC-seq, ChIP-seq, and DNase-seq},
year = {2021},
doi = {10.1101/2021.01.25.428108},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2021/01/27/2021.01.25.428108},
journal = {bioRxiv}
}
```
## Building the documentation
To serve the documentation locally, use
```
python -m mkdocs serve
```
## Bug Reports and Improvement Suggestions
Please [raise an issue](https://github.com/Chris1221/lanceotron/issues/new/choose) if there is anything you wish to ask or contribute.
Raw data
{
"_id": null,
"home_page": null,
"name": "lanceotron",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "deep learning, peak calling, keras",
"author": "Chris Cole, Lance Hentges, Simone G. Riva",
"author_email": "simo.riva15@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/1c/0c/ecd7ff238625e36a945193b3cff64fc31d0c2bd624e909f12326a019fd61/lanceotron-1.2.7.tar.gz",
"platform": null,
"description": "# LanceOTron CLI\n\n[![PyPI version](https://badge.fury.io/py/lanceotron.svg)](https://badge.fury.io/py/lanceotron) [![Downloads](https://pepy.tech/badge/lanceotron)](https://pepy.tech/project/lanceotron) [![CircleCI](https://circleci.com/gh/Chris1221/lanceotron/tree/main.svg?style=shield)](https://circleci.com/gh/Chris1221/lanceotron/tree/main) [![codecov](https://codecov.io/gh/Chris1221/lanceotron/branch/main/graph/badge.svg?token=yhL3YI00UP)](https://codecov.io/gh/Chris1221/lanceotron)\n\nA bare-bones interface to the trained LanceOTron (LoT) model from the command line.\n\n## Installation\n\n```{sh}\npip install lanceotron\n```\n\n### Local installation \n\n1. Clone the repository.\n2. Install dependencies with pip.\n3. Install the package.\n4. Run tests to ensure that everything is working.\n\n```{sh}\ngit clone git@github.com:Chris1221/lanceotron.git; cd lanceotron # Step 1\npip install -r requirements.txt # Step 2\npip install -e . # Step 3\npython -m unittest\n```\n\n## Usage\n\nTo see available commands, use the `--help` flag.\n\n```\nlanceotron --help\n```\n\n## Call Peaks\n\nTo call peaks from a bigWig track, use the `callPeaks` command.\n\n| Option | Description | Default |\n|-----------------|--------------------------------------------------------|---------|\n| file | BigWig Track to analyse | |\n| -t, --threshold | Threshold for selecting candidate peaks | 4 |\n| -w, --window | Window size for rolling mean to select candidate peaks | 400 |\n| -f, --folder | Output folder | \"./\" |\n| --skipheader | Skip writing the header | False |\n\n\n## Call Peaks with Input\n\nTo call peaks from a bigWig track with an input file, use the `callPeaks_Input` command.\n\n| Option | Description | Default |\n|-----------------|--------------------------------------------------------|---------|\n| file | BigWig track to analyse | |\n| -i, --input | Control input track to calculate significance of peaks | |\n| -t, --threshold | Threshold for selecting candidate peaks | 4 |\n| -w, --window | Window size for rolling mean to select candidate peaks | 400 |\n| -f, --folder | Output folder | \"./\" |\n| --skipheader | Skip writing the header | False |\n\n## Score a Bed file\n\nTo score the peaks in an existing Bed file, use the `scoreBed` command.\n\n| Option | Description | Default |\n|-----------------|--------------------------------------------------------|---------|\n| file | BigWig Track to analyse | |\n| -b, --bed | Bed file of regions to be scored | |\n| -f, --folder | Output folder | \"./\" |\n| --skipheader | Skip writing the header | False |\n\n\n## Examples\n\nThere is a basic bigWig file included in the `test` subdirectory. To try out the caller, execute it on this file. \n\n```sh\nlanceotron callPeaks test/chr22.bw -f output_folder\n```\n\n## Citation\n\n```{bibtex}\n@article {Hentges2021.01.25.428108,\n\tauthor = {Hentges, Lance D. and Sergeant, Martin J. and Downes, Damien J. and Hughes, Jim R. and Taylor, Stephen},\n\ttitle = {LanceOtron: a deep learning peak caller for ATAC-seq, ChIP-seq, and DNase-seq},\n\tyear = {2021},\n\tdoi = {10.1101/2021.01.25.428108},\n\tpublisher = {Cold Spring Harbor Laboratory},\n\tURL = {https://www.biorxiv.org/content/early/2021/01/27/2021.01.25.428108},\n\tjournal = {bioRxiv}\n}\n```\n\n## Building the documentation\n\nTo serve the documentation locally, use\n\n```\npython -m mkdocs serve\n```\n\n## Bug Reports and Improvement Suggestions\n\nPlease [raise an issue](https://github.com/Chris1221/lanceotron/issues/new/choose) if there is anything you wish to ask or contribute. \n",
"bugtrack_url": null,
"license": null,
"summary": "Command-line interface to the lanceotron deep learning peak caller",
"version": "1.2.7",
"project_urls": {
"Bug Tracker": "https://github.com/LHentges/lanceotron/issues",
"Source": "https://github.com/LHentges/lanceotron"
},
"split_keywords": [
"deep learning",
" peak calling",
" keras"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3e23c3a06f94ce2fdc35d955679a3ba6b6627a3c9b791cd753e5ef940060f8b8",
"md5": "f7ebe51a7a0cc619339827f55b117195",
"sha256": "8e1a8086a4e384b98559a483ad49ddf1cfab94d8fe7ab70b506dd5d07e3dc389"
},
"downloads": -1,
"filename": "lanceotron-1.2.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f7ebe51a7a0cc619339827f55b117195",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 1601031,
"upload_time": "2024-07-31T02:31:05",
"upload_time_iso_8601": "2024-07-31T02:31:05.659511Z",
"url": "https://files.pythonhosted.org/packages/3e/23/c3a06f94ce2fdc35d955679a3ba6b6627a3c9b791cd753e5ef940060f8b8/lanceotron-1.2.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1c0cecd7ff238625e36a945193b3cff64fc31d0c2bd624e909f12326a019fd61",
"md5": "967201edd300608bbf3466493d3f2e11",
"sha256": "7729f870244f7b68eda0e30250b9b3957b7722e2fe035499a1fc2cb07852b507"
},
"downloads": -1,
"filename": "lanceotron-1.2.7.tar.gz",
"has_sig": false,
"md5_digest": "967201edd300608bbf3466493d3f2e11",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 1603923,
"upload_time": "2024-07-31T02:31:07",
"upload_time_iso_8601": "2024-07-31T02:31:07.146027Z",
"url": "https://files.pythonhosted.org/packages/1c/0c/ecd7ff238625e36a945193b3cff64fc31d0c2bd624e909f12326a019fd61/lanceotron-1.2.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-31 02:31:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "LHentges",
"github_project": "lanceotron",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"circle": true,
"lcname": "lanceotron"
}