langchain-google-vertexai


Namelangchain-google-vertexai JSON
Version 2.0.28 PyPI version JSON
download
home_pagehttps://github.com/langchain-ai/langchain-google
SummaryAn integration package connecting Google VertexAI and LangChain
upload_time2025-08-04 17:20:56
maintainerNone
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

## Contents

1. [Installation](#installation)
2. [Chat Models](#chat-models)
   * [Multimodal inputs](#multimodal-inputs)
3. [Embeddings](#embeddings)
4. [LLMs](#llms)
5. [Code Generation](#code-generation)
   * [Example: Generate a Python function](#example-generate-a-python-function)
   * [Example: Generate JavaScript code](#example-generate-javascript-code)
   * [Notes](#notes)

## Installation

```bash
pip install -U langchain-google-vertexai
```

## Chat Models

`ChatVertexAI` class exposes models such as `gemini-pro` and other Gemini variants.

To use, you should have a Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

```python
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
```

### Multimodal inputs

Gemini supports image inputs when providing a single chat message. Example:

```python
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-2.0-flash-001")
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])
```

The value of `image_url` can be:

* A public image URL
* An accessible Google Cloud Storage (GCS) file (e.g., `"gcs://path/to/file.png"`)
* A base64 encoded image (e.g., `""`)

### Multimodal Outputs

Gemini supports image output. Example:

```python
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI, Modality

llm = ChatVertexAI(model_name="gemini-2.0-flash-preview-image-generation",
                   response_modalities = [Modality.TEXT, Modality.IMAGE])
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "Generate an image of a cat.",
        },
    ]
)
llm.invoke([message])
```

## Embeddings

Google Cloud embeddings models can be used as:

```python
from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")
```

## LLMs

Use Google Cloud's generative AI models as LangChain LLMs:

```python
from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))
```

## Code Generation

You can use Gemini models for code generation tasks to generate code snippets, functions, or scripts in various programming languages.

### Example: Generate a Python function

```python
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)

prompt = "Write a Python function that checks if a string is a valid email address."

generated_code = llm.invoke(prompt)
print(generated_code)
```

### Example: Generate JavaScript code

```python
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)
prompt_js = "Write a JavaScript function that returns the factorial of a number."

print(llm.invoke(prompt_js))
```

### Notes

* Adjust `temperature` to control creativity (higher values increase randomness).
* Use `max_output_tokens` to limit the length of the generated code.
* Gemini models are well-suited for code generation tasks with advanced understanding of programming concepts.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/langchain-ai/langchain-google",
    "name": "langchain-google-vertexai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/54/cf/0f19c7f6bf336f4681ee63e9ba91d94f112ced688825ac22584a3b72b6f8/langchain_google_vertexai-2.0.28.tar.gz",
    "platform": null,
    "description": "# langchain-google-vertexai\n\nThis package contains the LangChain integrations for Google Cloud generative models.\n\n## Contents\n\n1. [Installation](#installation)\n2. [Chat Models](#chat-models)\n   * [Multimodal inputs](#multimodal-inputs)\n3. [Embeddings](#embeddings)\n4. [LLMs](#llms)\n5. [Code Generation](#code-generation)\n   * [Example: Generate a Python function](#example-generate-a-python-function)\n   * [Example: Generate JavaScript code](#example-generate-javascript-code)\n   * [Notes](#notes)\n\n## Installation\n\n```bash\npip install -U langchain-google-vertexai\n```\n\n## Chat Models\n\n`ChatVertexAI` class exposes models such as `gemini-pro` and other Gemini variants.\n\nTo use, you should have a Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:\n\n```python\nfrom langchain_google_vertexai import ChatVertexAI\n\nllm = ChatVertexAI(model_name=\"gemini-pro\")\nllm.invoke(\"Sing a ballad of LangChain.\")\n```\n\n### Multimodal inputs\n\nGemini supports image inputs when providing a single chat message. Example:\n\n```python\nfrom langchain_core.messages import HumanMessage\nfrom langchain_google_vertexai import ChatVertexAI\n\nllm = ChatVertexAI(model_name=\"gemini-2.0-flash-001\")\nmessage = HumanMessage(\n    content=[\n        {\n            \"type\": \"text\",\n            \"text\": \"What's in this image?\",\n        },\n        {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://picsum.photos/seed/picsum/200/300\"}},\n    ]\n)\nllm.invoke([message])\n```\n\nThe value of `image_url` can be:\n\n* A public image URL\n* An accessible Google Cloud Storage (GCS) file (e.g., `\"gcs://path/to/file.png\"`)\n* A base64 encoded image (e.g., `\"\"`)\n\n### Multimodal Outputs\n\nGemini supports image output. Example:\n\n```python\nfrom langchain_core.messages import HumanMessage\nfrom langchain_google_vertexai import ChatVertexAI, Modality\n\nllm = ChatVertexAI(model_name=\"gemini-2.0-flash-preview-image-generation\",\n                   response_modalities = [Modality.TEXT, Modality.IMAGE])\nmessage = HumanMessage(\n    content=[\n        {\n            \"type\": \"text\",\n            \"text\": \"Generate an image of a cat.\",\n        },\n    ]\n)\nllm.invoke([message])\n```\n\n## Embeddings\n\nGoogle Cloud embeddings models can be used as:\n\n```python\nfrom langchain_google_vertexai import VertexAIEmbeddings\n\nembeddings = VertexAIEmbeddings()\nembeddings.embed_query(\"hello, world!\")\n```\n\n## LLMs\n\nUse Google Cloud's generative AI models as LangChain LLMs:\n\n```python\nfrom langchain_core.prompts import PromptTemplate\nfrom langchain_google_vertexai import ChatVertexAI\n\ntemplate = \"\"\"Question: {question}\n\nAnswer: Let's think step by step.\"\"\"\nprompt = PromptTemplate.from_template(template)\n\nllm = ChatVertexAI(model_name=\"gemini-pro\")\nchain = prompt | llm\n\nquestion = \"Who was the president of the USA in 1994?\"\nprint(chain.invoke({\"question\": question}))\n```\n\n## Code Generation\n\nYou can use Gemini models for code generation tasks to generate code snippets, functions, or scripts in various programming languages.\n\n### Example: Generate a Python function\n\n```python\nfrom langchain_google_vertexai import ChatVertexAI\n\nllm = ChatVertexAI(model_name=\"gemini-pro\", temperature=0.3, max_output_tokens=1000)\n\nprompt = \"Write a Python function that checks if a string is a valid email address.\"\n\ngenerated_code = llm.invoke(prompt)\nprint(generated_code)\n```\n\n### Example: Generate JavaScript code\n\n```python\nfrom langchain_google_vertexai import ChatVertexAI\n\nllm = ChatVertexAI(model_name=\"gemini-pro\", temperature=0.3, max_output_tokens=1000)\nprompt_js = \"Write a JavaScript function that returns the factorial of a number.\"\n\nprint(llm.invoke(prompt_js))\n```\n\n### Notes\n\n* Adjust `temperature` to control creativity (higher values increase randomness).\n* Use `max_output_tokens` to limit the length of the generated code.\n* Gemini models are well-suited for code generation tasks with advanced understanding of programming concepts.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "An integration package connecting Google VertexAI and LangChain",
    "version": "2.0.28",
    "project_urls": {
        "Homepage": "https://github.com/langchain-ai/langchain-google",
        "Repository": "https://github.com/langchain-ai/langchain-google",
        "Source Code": "https://github.com/langchain-ai/langchain-google/tree/main/libs/vertexai"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6634ee3d5aec5b1fed6961d2584ecb8d366849edf44ba983824320705658c2cb",
                "md5": "7c2e5e5a71df55ef2a673ed3031c4352",
                "sha256": "8dc7a5cfb50b19fa455a284bed9f4f330e0eb462f3251773576b207780eb7709"
            },
            "downloads": -1,
            "filename": "langchain_google_vertexai-2.0.28-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7c2e5e5a71df55ef2a673ed3031c4352",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 103964,
            "upload_time": "2025-08-04T17:20:55",
            "upload_time_iso_8601": "2025-08-04T17:20:55.469491Z",
            "url": "https://files.pythonhosted.org/packages/66/34/ee3d5aec5b1fed6961d2584ecb8d366849edf44ba983824320705658c2cb/langchain_google_vertexai-2.0.28-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "54cf0f19c7f6bf336f4681ee63e9ba91d94f112ced688825ac22584a3b72b6f8",
                "md5": "44b515b457378007d7eeacd830c777f6",
                "sha256": "35fcd366752b6a5b8fa490c80816b9e8d372edc39fb5b3ad177b1d4f269781f2"
            },
            "downloads": -1,
            "filename": "langchain_google_vertexai-2.0.28.tar.gz",
            "has_sig": false,
            "md5_digest": "44b515b457378007d7eeacd830c777f6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 88116,
            "upload_time": "2025-08-04T17:20:56",
            "upload_time_iso_8601": "2025-08-04T17:20:56.669982Z",
            "url": "https://files.pythonhosted.org/packages/54/cf/0f19c7f6bf336f4681ee63e9ba91d94f112ced688825ac22584a3b72b6f8/langchain_google_vertexai-2.0.28.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-04 17:20:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "langchain-ai",
    "github_project": "langchain-google",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "langchain-google-vertexai"
}
        
Elapsed time: 1.97937s