# LangViz-Studio
LangViz-Studio is an observability toolkit for [LangGraph](https://pypi.org/project/langgraph/) workflows.
<img src="https://github.com/tubone24/LangViz-studio/blob/main/images/logo.png?raw=true" width="30%" alt="logo"/>
It enables you to track the execution states, node transitions, and conditional edges of your state-based flows or agent pipelines in real-time, sending all data asynchronously to a customizable endpoint (e.g., a Next.js server) for visualization.
## Key Features
- GraphObservability
- Automatically records and sends node start/end events, edge transitions, and conditional branch usage.
- Maintains a unique graphId (UUID by default) and an optional friendly graph_name.
- Sends data to a configured endpoint (http://localhost:3000 by default).
- ObservabilityStateGraph
- A subclass of langgraph.graph.StateGraph that automatically wraps node functions and edge definitions so all observability data is captured with no extra code.
- Just use add_node(...), add_edge(...), add_conditional_edges(...) as normal, and your graph’s runtime states will be sent in real-time for visualization.
- Asynchronous and Non-blocking
- Uses an internal background thread running an asyncio event loop to POST updates via httpx.AsyncClient, ensuring minimal impact on your main workflow thread.
## Installation
```bash
pip install langviz-studio
```
(Also ensure you have installed langgraph and other dependencies like langchain_core, if applicable.)
## Usage
Below is a minimal example showing how to use LangViz-Studio with [LangGraph](https://pypi.org/project/langgraph/).
In this example, we define two simple asynchronous node functions (run_start and run_end) and connect them in a StateGraph. Observability logs are sent automatically.
```python
import asyncio
from langviz_studio.observability import GraphObservability, ObservabilityStateGraph
async def run_start(state, config=None):
print("=== [start] node invoked ===")
state["msg"] = "Hello from start!"
return state
async def run_end(state, config=None):
print("=== [end] node invoked ===")
state["result"] = "Done"
return state
async def main():
# 1. Set your Observability
obs = GraphObservability(
graph_name="MyExampleGraph"
)
# 2. Using ObservabilityStateGraph instead of StateGraph
workflow = ObservabilityStateGraph(obs, state_type=dict)
# 3. Nodes are added in the same manner as StateGraph
workflow.add_node("start", run_start)
workflow.add_node("end", run_end)
# Edges / Conditional edges are also added in the same manner as StateGraph
workflow.add_edge("start", "end")
workflow.set_entry_point("start")
# 4) Compile the graph
compiled = workflow.compile()
initial_state = {}
# 5) Run the workflow
result = await compiled.ainvoke(initial_state)
print("=== Workflow finished ===")
print("Final State:", result)
if __name__ == "__main__":
asyncio.run(main())
```
## Server-Side Visualization
By default, GraphObservability calls two endpoints on your server:
- POST /api/graph/start — triggered once when the first node starts, to initialize a new graph record.
- POST /api/graph/ingest — triggered after every node start/end or edge creation, sending updates.
## How it Works Internally
1. A background thread holds an asyncio event loop (via _AsyncLoopThread), so we can await httpx.AsyncClient.post(...) without blocking the main process or requiring the user to manage async.
2. Each node start/end or edge creation calls a short, synchronous method (_post_to_nextjs) which enqueues a coroutine in the background event loop to do an HTTP POST.
3. This ensures minimal overhead and “fire-and-forget” updates to your server.
## License
MIT License. See [LICENSE](./LICENSE) for details.
## Contributing
Pull requests and issues are welcome! If you have suggestions or find bugs, please open an issue or submit a PR on the GitHub repository.
Raw data
{
"_id": null,
"home_page": null,
"name": "langviz-studio",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9.0",
"maintainer_email": null,
"keywords": "langchain, observability, langgraph, graphviz",
"author": "tubone",
"author_email": "tubo.yyyuuu@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7d/1f/35848c3d15bedf3294791ccc470c1f78bebe574fa0b065fabe33095adc16/langviz_studio-0.1.2.tar.gz",
"platform": null,
"description": "# LangViz-Studio\n\nLangViz-Studio is an observability toolkit for [LangGraph](https://pypi.org/project/langgraph/) workflows. \n\n<img src=\"https://github.com/tubone24/LangViz-studio/blob/main/images/logo.png?raw=true\" width=\"30%\" alt=\"logo\"/>\n\nIt enables you to track the execution states, node transitions, and conditional edges of your state-based flows or agent pipelines in real-time, sending all data asynchronously to a customizable endpoint (e.g., a Next.js server) for visualization.\n\n## Key Features\n\n- GraphObservability\n - Automatically records and sends node start/end events, edge transitions, and conditional branch usage. \n - Maintains a unique graphId (UUID by default) and an optional friendly graph_name. \n - Sends data to a configured endpoint (http://localhost:3000 by default).\n\n- ObservabilityStateGraph\n - A subclass of langgraph.graph.StateGraph that automatically wraps node functions and edge definitions so all observability data is captured with no extra code. \n - Just use add_node(...), add_edge(...), add_conditional_edges(...) as normal, and your graph\u2019s runtime states will be sent in real-time for visualization.\n\n- Asynchronous and Non-blocking\n - Uses an internal background thread running an asyncio event loop to POST updates via httpx.AsyncClient, ensuring minimal impact on your main workflow thread.\n\n## Installation\n\n```bash\npip install langviz-studio\n```\n\n(Also ensure you have installed langgraph and other dependencies like langchain_core, if applicable.)\n\n## Usage\n\nBelow is a minimal example showing how to use LangViz-Studio with [LangGraph](https://pypi.org/project/langgraph/).\nIn this example, we define two simple asynchronous node functions (run_start and run_end) and connect them in a StateGraph. Observability logs are sent automatically.\n\n```python\nimport asyncio\nfrom langviz_studio.observability import GraphObservability, ObservabilityStateGraph\n\nasync def run_start(state, config=None):\n print(\"=== [start] node invoked ===\")\n state[\"msg\"] = \"Hello from start!\"\n return state\n\nasync def run_end(state, config=None):\n print(\"=== [end] node invoked ===\")\n state[\"result\"] = \"Done\"\n return state\n\nasync def main():\n # 1. Set your Observability\n obs = GraphObservability(\n graph_name=\"MyExampleGraph\"\n )\n\n # 2. Using ObservabilityStateGraph instead of StateGraph\n workflow = ObservabilityStateGraph(obs, state_type=dict)\n\n # 3. Nodes are added in the same manner as StateGraph\n workflow.add_node(\"start\", run_start)\n workflow.add_node(\"end\", run_end)\n # Edges / Conditional edges are also added in the same manner as StateGraph\n workflow.add_edge(\"start\", \"end\")\n\n workflow.set_entry_point(\"start\")\n\n # 4) Compile the graph\n compiled = workflow.compile()\n\n initial_state = {}\n # 5) Run the workflow\n result = await compiled.ainvoke(initial_state)\n print(\"=== Workflow finished ===\")\n print(\"Final State:\", result)\n\nif __name__ == \"__main__\":\n asyncio.run(main())\n```\n\n## Server-Side Visualization\n\nBy default, GraphObservability calls two endpoints on your server:\n\n- POST /api/graph/start \u2014 triggered once when the first node starts, to initialize a new graph record.\n- POST /api/graph/ingest \u2014 triggered after every node start/end or edge creation, sending updates.\n\n## How it Works Internally\n1. A background thread holds an asyncio event loop (via _AsyncLoopThread), so we can await httpx.AsyncClient.post(...) without blocking the main process or requiring the user to manage async.\n\n2. Each node start/end or edge creation calls a short, synchronous method (_post_to_nextjs) which enqueues a coroutine in the background event loop to do an HTTP POST.\n\n3. This ensures minimal overhead and \u201cfire-and-forget\u201d updates to your server.\n\n## License\nMIT License. See [LICENSE](./LICENSE) for details.\n\n## Contributing\nPull requests and issues are welcome! If you have suggestions or find bugs, please open an issue or submit a PR on the GitHub repository.",
"bugtrack_url": null,
"license": "MIT",
"summary": "LangViz-Studio is an observability toolkit for LangGraph workflows. ",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"langchain",
" observability",
" langgraph",
" graphviz"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aa38223df5f9957f54aa44f635bc7982f3047b0e668502859c09ce2a21226ece",
"md5": "5895c5f879fea8d430d262438b5ef6b9",
"sha256": "a6718825f8bac65fcdf399a113c0cdc711f6f818f5f8375821480b4b91a83052"
},
"downloads": -1,
"filename": "langviz_studio-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5895c5f879fea8d430d262438b5ef6b9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9.0",
"size": 7208,
"upload_time": "2025-01-18T13:40:34",
"upload_time_iso_8601": "2025-01-18T13:40:34.072824Z",
"url": "https://files.pythonhosted.org/packages/aa/38/223df5f9957f54aa44f635bc7982f3047b0e668502859c09ce2a21226ece/langviz_studio-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7d1f35848c3d15bedf3294791ccc470c1f78bebe574fa0b065fabe33095adc16",
"md5": "b680b06fe8fddd6f97c03f3f623c5112",
"sha256": "f907e8e3e8be112cca2603264e1faea36b41418d6d98f0c20f1c49201f2f4d74"
},
"downloads": -1,
"filename": "langviz_studio-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "b680b06fe8fddd6f97c03f3f623c5112",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9.0",
"size": 6448,
"upload_time": "2025-01-18T13:40:36",
"upload_time_iso_8601": "2025-01-18T13:40:36.448619Z",
"url": "https://files.pythonhosted.org/packages/7d/1f/35848c3d15bedf3294791ccc470c1f78bebe574fa0b065fabe33095adc16/langviz_studio-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 13:40:36",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "langviz-studio"
}