<details><summary>🆕 What's new</summary><br>
- 2025/10/21: `lapx` [v0.7.0](https://github.com/rathaROG/lapx/releases/tag/v0.7.0) introduced **`lapjvs()`**.
- 2025/10/16: `lapx` [v0.6.0](https://github.com/rathaROG/lapx/releases/tag/v0.6.0) introduced **`lapjvx()`**, **`lapjvxa()`**, and **`lapjvc()`**.
- 2025/10/15: Added Python 3.14 support and [more](https://github.com/rathaROG/lapx/pull/15).
- 2024/12/01: The original [`lap`](https://github.com/gatagat/lap) and [`lapx`](https://github.com/rathaROG/lapx) have been merged.
</details>
---
[](https://github.com/rathaROG/lapx/actions/workflows/test_simple.yaml)
[](https://github.com/rathaROG/lapx/actions/workflows/benchmark.yaml)
[](https://github.com/rathaROG/lapx/actions/workflows/prepublish.yaml)
[](https://github.com/rathaROG/lapx/actions/workflows/publish.yaml)
# Linear Assignment Problem Solvers
`lapx` was initially created to maintain Tomas Kazmar's [`lap`](https://github.com/gatagat/lap), but has since evolved to offer much more.
`lapx` features the original **`lapjv()`** and **`lapmod()`** functions, and since [**v0.6.0**](https://github.com/rathaROG/lapx/releases/tag/v0.6.0), `lapx` has introduced three additional assignment solvers:
- **`lapjvx()`** and **`lapjvxa()`** — enhanced versions of [`lap.lapjv()`](https://github.com/gatagat/lap) with more flexible output formats
- **`lapjvc()`** — an enhanced version of Christoph Heindl’s [`lapsolver.solve_dense()`](https://github.com/cheind/py-lapsolver) with unified output formats
`lapx` [**v0.7.0**](https://github.com/rathaROG/lapx/releases/tag/v0.7.0) has introduced a new function: **`lapjvs()`** — an enhanced version of Vadim Markovtsev’s [`lapjv()`](https://github.com/src-d/lapjv), supporting both rectangular and square cost matrices, with flexible output styles.
<details><summary>Read more</summary><br>
All [linear assignment problem](https://en.wikipedia.org/wiki/Assignment_problem) solvers in `lapx` are based on Jonker-Volgenant algorithm for dense LAPJV ¹ or sparse LAPMOD ² matrices. Tomas Kazmar's [`lap`](https://github.com/gatagat/lap) implemented the core **`lapjv()`** and **`lapmod()`** from scratch based solely on the papers ¹˒² and the public domain Pascal implementation provided by A. Volgenant ³.
<sup>¹ R. Jonker and A. Volgenant, "A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems", Computing 38, 325-340 (1987) </sup><br>
<sup>² A. Volgenant, "Linear and Semi-Assignment Problems: A Core Oriented Approach", Computer Ops Res. 23, 917-932 (1996) </sup><br>
<sup>³ http://www.assignmentproblems.com/LAPJV.htm | [[archive.org](https://web.archive.org/web/20220221010749/http://www.assignmentproblems.com/LAPJV.htm)] </sup><br>
</details>
## 💽 Installation
### Install from [PyPI](https://pypi.org/project/lapx/):
[](https://badge.fury.io/py/lapx)
[](https://pepy.tech/project/lapx)
[](https://pepy.tech/project/lapx)
```
pip install lapx
```
| **Pre-built Wheels** 🛞 | **Windows** ✅ | **Linux** ✅ | **macOS** ✅ |
|:---:|:---:|:---:|:---:|
| Python 3.7 | AMD64 | x86_64/aarch64 | x86_64 |
| Python 3.8 | AMD64 | x86_64/aarch64 | x86_64/arm64 |
| Python 3.9-3.14 ¹`² | AMD64/ARM64 ³ | x86_64/aarch64 | x86_64/arm64 |
<sup>¹ `lapx` v0.5.13+ supports numpy 1.x-2.x and Python 3.14. 🆕 </sup><br>
<sup>² Pre-built wheels for Python 3.13+ do not support free-threading.</sup><br>
<sup>³ Windows ARM64 is experimental.</sup><br>
<details><summary>Other options</summary>
### Install from GitHub repo (Require C++ compiler):
```
pip install git+https://github.com/rathaROG/lapx.git
```
### Build and install (Require C++ compiler):
```
git clone https://github.com/rathaROG/lapx.git
cd lapx
pip install "setuptools>=67.8.0"
pip install wheel build
python -m build --wheel
cd dist
```
</details>
## 🧪 Usage
### 1. The original function ``lapjv()``
The same as `lap`, use `import lap` to import; for example:
```python
import numpy as np, lap
# x, y = lap.lapjv(np.random.rand(4, 5), extend_cost=True, return_cost=False)
total_cost, x, y = lap.lapjv(np.random.rand(4, 5), extend_cost=True, return_cost=True)
assignments = np.array([[y[i],i] for i in x if i >= 0])
```
For detailed documentation of **common parameters**, see the docstring in [`lap/__init__.py`](https://github.com/rathaROG/lapx/blob/main/lap/__init__.py).
<details><summary>Need more explanation?</summary>
The function `lapjv()` returns the assignment cost `cost` and two arrays `x` and `y`. If cost matrix `C` has shape NxM, then `x` is a size-N array specifying to which column each row is assigned, and `y` is a size-M array specifying to which row each column is assigned. For example, an output of `x = [1, 0]` indicates that row 0 is assigned to column 1 and row 1 is assigned to column 0. Similarly, an output of `x = [2, 1, 0]` indicates that row 0 is assigned to column 2, row 1 is assigned to column 1, and row 2 is assigned to column 0.
Note that this function *does not* return the assignment matrix (as done by SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) and lapsolver's [`solve dense`](https://github.com/cheind/py-lapsolver)). The assignment matrix can be constructed from `x` as follows:
```python
A = np.zeros((N, M))
for i in range(N):
A[i, x[i]] = 1
```
Equivalently, we could construct the assignment matrix from `y`:
```python
A = np.zeros((N, M))
for j in range(M):
A[y[j], j] = 1
```
Finally, note that the outputs are redundant: we can construct `x` from `y`, and vise versa:
```python
x = [np.where(y == i)[0][0] for i in range(N)]
y = [np.where(x == j)[0][0] for j in range(M)]
```
</details>
### 2. The new function ``lapjvx()``
`lapjvx()` basically is `lapjv()`, but it matches the return style of SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) with no additional overhead. You can see how it compares to others in the Object Tracking benchmark [here](https://github.com/rathaROG/lapx/blob/main/benchmark.md#-object-tracking).
```python
import numpy as np, lap
# row_indices, col_indices = lap.lapjvx(np.random.rand(4, 5), extend_cost=True, return_cost=False)
total_cost, row_indices, col_indices = lap.lapjvx(np.random.rand(4, 5), extend_cost=True, return_cost=True)
assignments = np.array(list(zip(row_indices, col_indices)))
```
<details><summary>Show <code>lapjvxa()</code></summary>
### 3. The new function ``lapjvxa()``
`lapjvxa()` is essentially the same as `lapjvx()`, but it returns assignments with shape `(K, 2)` directly — no additional or manual post-processing required. `lapjvxa()` is optimized for applications that only need the final assignments and do not require control over the `cost_limit` parameter.
```python
import numpy as np, lap
# assignments = lap.lapjvxa(np.random.rand(4, 5), extend_cost=True, return_cost=False)
total_cost, assignments = lap.lapjvxa(np.random.rand(4, 5), extend_cost=True, return_cost=True)
```
</details>
<details><summary>Show <code>lapjvc()</code></summary>
### 4. The new function ``lapjvc()``
`lapjvc()` is an enhanced version of Christoph Heindl's [py-lapsolver](https://github.com/cheind/py-lapsolver). `lapjvc()` is as fast as (if not faster than) other functions when `n=m` (the cost matrix is square), but it is much slower when `n≠m` (the cost matrix is rectangular). This function adopts the return style of `lapjvx()` — the same as SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html).
```python
import numpy as np, lap
# row_indices, col_indices = lap.lapjvc(np.random.rand(4, 5), return_cost=False)
total_cost, row_indices, col_indices = lap.lapjvc(np.random.rand(4, 5), return_cost=True)
assignments = np.array(list(zip(row_indices, col_indices)))
```
</details>
<details><summary>Show <code>lapjvs()</code></summary>
### 5. The new function ``lapjvs()``
`lapjvs()` is an enhanced version of Vadim Markovtsev's [`lapjv`](https://github.com/src-d/lapjv). While `lapjvs()` does not use CPU special instruction sets like the original implementation, it still delivers comparable performance. It natively supports both square and rectangular cost matrices and can produce output either in SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) style or `(x, y)` mappings. See the [docstring here](https://github.com/rathaROG/lapx/blob/main/lap/lapjvs.py) for more details.
```python
import numpy as np, lap
# row_indices, col_indices = lap.lapjvs(np.random.rand(4, 5), return_cost=False, jvx_like=True)
total_cost, row_indices, col_indices = lap.lapjvs(np.random.rand(4, 5), return_cost=True, jvx_like=True)
assignments = np.array(list(zip(row_indices, col_indices)))
```
</details>
<details><summary>Show <code>lapmod()</code></summary>
### 6. The original function ``lapmod()``
For see the [docstring](https://github.com/rathaROG/lapx/blob/8d56b42265a23c3b5a290b1039dacaac70dfe60d/lap/lapmod.py#L275) for details.
```python
import numpy as np, lap, time
n, m = 5000, 5000
cm = np.random.rand(n, m)
t0 = time.time()
c1, x1, y1 = lap.lapjv(cm, return_cost=True)
print(f"lapjv: cost={c1:.6f}, time={time.time()-t0:.4f}s")
cc, kk, ii = cm.ravel(), np.tile(np.arange(m), n), np.arange(0, n*m+1, m)
t1 = time.time()
c2, x2, y2 = lap.lapmod(n, cc, ii, kk, return_cost=True)
print(f"lapmod: cost={c2:.6f}, time={time.time()-t1:.4f}s")
print("Assignments identical?", (np.all(x1 == x2) and np.all(y1 == y2)))
```
</details>
## 🏆 Quick Benchmark
To run a quick benchmark or see some interesting results, please check [benchmark.md](https://github.com/rathaROG/lapx/blob/main/benchmark.md).
## 📝 License
Please refer to [NOTICE](https://github.com/rathaROG/lapx/blob/main/NOTICE) & [LICENSE](https://github.com/rathaROG/lapx/blob/main/LICENSE).
Raw data
{
"_id": null,
"home_page": "https://github.com/rathaROG/lapx",
"name": "lapx",
"maintainer": "rathaROG",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "Linear Assignment Problem Solver, LAP solver, Jonker-Volgenant Algorithm, LAPJV, LAPMOD, lap, lapx, lapjvx, lapjvxa, lapjvc, lapjvs",
"author": "Ratha SIV",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/40/b7/6a13b7978f9b1c9868ccf4c3bc55f0c020e76b1a010cd08418b315d90d42/lapx-0.7.1.tar.gz",
"platform": null,
"description": "<details><summary>\ud83c\udd95 What's new</summary><br>\n\n- 2025/10/21: `lapx` [v0.7.0](https://github.com/rathaROG/lapx/releases/tag/v0.7.0) introduced **`lapjvs()`**.\n- 2025/10/16: `lapx` [v0.6.0](https://github.com/rathaROG/lapx/releases/tag/v0.6.0) introduced **`lapjvx()`**, **`lapjvxa()`**, and **`lapjvc()`**.\n- 2025/10/15: Added Python 3.14 support and [more](https://github.com/rathaROG/lapx/pull/15).\n- 2024/12/01: The original [`lap`](https://github.com/gatagat/lap) and [`lapx`](https://github.com/rathaROG/lapx) have been merged.\n\n</details>\n\n---\n\n[](https://github.com/rathaROG/lapx/actions/workflows/test_simple.yaml)\n[](https://github.com/rathaROG/lapx/actions/workflows/benchmark.yaml)\n[](https://github.com/rathaROG/lapx/actions/workflows/prepublish.yaml)\n[](https://github.com/rathaROG/lapx/actions/workflows/publish.yaml)\n\n# Linear Assignment Problem Solvers\n\n`lapx` was initially created to maintain Tomas Kazmar's [`lap`](https://github.com/gatagat/lap), but has since evolved to offer much more. \n\n`lapx` features the original **`lapjv()`** and **`lapmod()`** functions, and since [**v0.6.0**](https://github.com/rathaROG/lapx/releases/tag/v0.6.0), `lapx` has introduced three additional assignment solvers: \n- **`lapjvx()`** and **`lapjvxa()`** \u2014 enhanced versions of [`lap.lapjv()`](https://github.com/gatagat/lap) with more flexible output formats \n- **`lapjvc()`** \u2014 an enhanced version of Christoph Heindl\u2019s [`lapsolver.solve_dense()`](https://github.com/cheind/py-lapsolver) with unified output formats\n\n`lapx` [**v0.7.0**](https://github.com/rathaROG/lapx/releases/tag/v0.7.0) has introduced a new function: **`lapjvs()`** \u2014 an enhanced version of Vadim Markovtsev\u2019s [`lapjv()`](https://github.com/src-d/lapjv), supporting both rectangular and square cost matrices, with flexible output styles.\n\n<details><summary>Read more</summary><br>\n\nAll [linear assignment problem](https://en.wikipedia.org/wiki/Assignment_problem) solvers in `lapx` are based on Jonker-Volgenant algorithm for dense LAPJV \u00b9 or sparse LAPMOD \u00b2 matrices. Tomas Kazmar's [`lap`](https://github.com/gatagat/lap) implemented the core **`lapjv()`** and **`lapmod()`** from scratch based solely on the papers \u00b9\u02d2\u00b2 and the public domain Pascal implementation provided by A. Volgenant \u00b3. \n\n<sup>\u00b9 R. Jonker and A. Volgenant, \"A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems\", Computing 38, 325-340 (1987) </sup><br>\n<sup>\u00b2 A. Volgenant, \"Linear and Semi-Assignment Problems: A Core Oriented Approach\", Computer Ops Res. 23, 917-932 (1996) </sup><br>\n<sup>\u00b3 http://www.assignmentproblems.com/LAPJV.htm | [[archive.org](https://web.archive.org/web/20220221010749/http://www.assignmentproblems.com/LAPJV.htm)] </sup><br>\n\n</details>\n\n## \ud83d\udcbd Installation\n\n### Install from [PyPI](https://pypi.org/project/lapx/):\n\n[](https://badge.fury.io/py/lapx)\n[](https://pepy.tech/project/lapx)\n[](https://pepy.tech/project/lapx)\n\n```\npip install lapx\n```\n\n| **Pre-built Wheels** \ud83d\udede | **Windows** \u2705 | **Linux** \u2705 | **macOS** \u2705 |\n|:---:|:---:|:---:|:---:|\n| Python 3.7 | AMD64 | x86_64/aarch64 | x86_64 |\n| Python 3.8 | AMD64 | x86_64/aarch64 | x86_64/arm64 |\n| Python 3.9-3.14 \u00b9`\u00b2 | AMD64/ARM64 \u00b3 | x86_64/aarch64 | x86_64/arm64 |\n\n<sup>\u00b9 `lapx` v0.5.13+ supports numpy 1.x-2.x and Python 3.14. \ud83c\udd95 </sup><br>\n<sup>\u00b2 Pre-built wheels for Python 3.13+ do not support free-threading.</sup><br>\n<sup>\u00b3 Windows ARM64 is experimental.</sup><br>\n\n\n<details><summary>Other options</summary>\n\n### Install from GitHub repo (Require C++ compiler):\n\n```\npip install git+https://github.com/rathaROG/lapx.git\n```\n\n### Build and install (Require C++ compiler):\n\n```\ngit clone https://github.com/rathaROG/lapx.git\ncd lapx\npip install \"setuptools>=67.8.0\"\npip install wheel build\npython -m build --wheel\ncd dist\n```\n\n</details>\n\n## \ud83e\uddea Usage\n\n### 1. The original function ``lapjv()``\n\nThe same as `lap`, use `import lap` to import; for example:\n\n```python\nimport numpy as np, lap\n\n# x, y = lap.lapjv(np.random.rand(4, 5), extend_cost=True, return_cost=False)\ntotal_cost, x, y = lap.lapjv(np.random.rand(4, 5), extend_cost=True, return_cost=True)\nassignments = np.array([[y[i],i] for i in x if i >= 0])\n```\n\nFor detailed documentation of **common parameters**, see the docstring in [`lap/__init__.py`](https://github.com/rathaROG/lapx/blob/main/lap/__init__.py).\n\n<details><summary>Need more explanation?</summary>\n\nThe function `lapjv()` returns the assignment cost `cost` and two arrays `x` and `y`. If cost matrix `C` has shape NxM, then `x` is a size-N array specifying to which column each row is assigned, and `y` is a size-M array specifying to which row each column is assigned. For example, an output of `x = [1, 0]` indicates that row 0 is assigned to column 1 and row 1 is assigned to column 0. Similarly, an output of `x = [2, 1, 0]` indicates that row 0 is assigned to column 2, row 1 is assigned to column 1, and row 2 is assigned to column 0.\n\nNote that this function *does not* return the assignment matrix (as done by SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) and lapsolver's [`solve dense`](https://github.com/cheind/py-lapsolver)). The assignment matrix can be constructed from `x` as follows:\n\n```python\nA = np.zeros((N, M))\nfor i in range(N):\n A[i, x[i]] = 1\n```\n\nEquivalently, we could construct the assignment matrix from `y`:\n\n```python\nA = np.zeros((N, M))\nfor j in range(M):\n A[y[j], j] = 1\n```\n\nFinally, note that the outputs are redundant: we can construct `x` from `y`, and vise versa:\n\n```python\nx = [np.where(y == i)[0][0] for i in range(N)]\ny = [np.where(x == j)[0][0] for j in range(M)]\n```\n\n</details>\n\n### 2. The new function ``lapjvx()``\n\n`lapjvx()` basically is `lapjv()`, but it matches the return style of SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) with no additional overhead. You can see how it compares to others in the Object Tracking benchmark [here](https://github.com/rathaROG/lapx/blob/main/benchmark.md#-object-tracking).\n\n```python\nimport numpy as np, lap\n\n# row_indices, col_indices = lap.lapjvx(np.random.rand(4, 5), extend_cost=True, return_cost=False)\ntotal_cost, row_indices, col_indices = lap.lapjvx(np.random.rand(4, 5), extend_cost=True, return_cost=True)\nassignments = np.array(list(zip(row_indices, col_indices)))\n```\n\n<details><summary>Show <code>lapjvxa()</code></summary>\n\n### 3. The new function ``lapjvxa()``\n\n`lapjvxa()` is essentially the same as `lapjvx()`, but it returns assignments with shape `(K, 2)` directly \u2014 no additional or manual post-processing required. `lapjvxa()` is optimized for applications that only need the final assignments and do not require control over the `cost_limit` parameter.\n\n```python\nimport numpy as np, lap\n\n# assignments = lap.lapjvxa(np.random.rand(4, 5), extend_cost=True, return_cost=False)\ntotal_cost, assignments = lap.lapjvxa(np.random.rand(4, 5), extend_cost=True, return_cost=True)\n```\n\n</details>\n\n<details><summary>Show <code>lapjvc()</code></summary>\n\n### 4. The new function ``lapjvc()``\n\n`lapjvc()` is an enhanced version of Christoph Heindl's [py-lapsolver](https://github.com/cheind/py-lapsolver). `lapjvc()` is as fast as (if not faster than) other functions when `n=m` (the cost matrix is square), but it is much slower when `n\u2260m` (the cost matrix is rectangular). This function adopts the return style of `lapjvx()` \u2014 the same as SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html).\n\n```python\nimport numpy as np, lap\n\n# row_indices, col_indices = lap.lapjvc(np.random.rand(4, 5), return_cost=False)\ntotal_cost, row_indices, col_indices = lap.lapjvc(np.random.rand(4, 5), return_cost=True)\nassignments = np.array(list(zip(row_indices, col_indices)))\n```\n\n</details>\n\n<details><summary>Show <code>lapjvs()</code></summary>\n\n### 5. The new function ``lapjvs()``\n\n`lapjvs()` is an enhanced version of Vadim Markovtsev's [`lapjv`](https://github.com/src-d/lapjv). While `lapjvs()` does not use CPU special instruction sets like the original implementation, it still delivers comparable performance. It natively supports both square and rectangular cost matrices and can produce output either in SciPy's [`linear_sum_assignment`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html) style or `(x, y)` mappings. See the [docstring here](https://github.com/rathaROG/lapx/blob/main/lap/lapjvs.py) for more details.\n\n```python\nimport numpy as np, lap\n\n# row_indices, col_indices = lap.lapjvs(np.random.rand(4, 5), return_cost=False, jvx_like=True)\ntotal_cost, row_indices, col_indices = lap.lapjvs(np.random.rand(4, 5), return_cost=True, jvx_like=True)\nassignments = np.array(list(zip(row_indices, col_indices)))\n```\n\n</details>\n\n<details><summary>Show <code>lapmod()</code></summary>\n\n### 6. The original function ``lapmod()``\n\nFor see the [docstring](https://github.com/rathaROG/lapx/blob/8d56b42265a23c3b5a290b1039dacaac70dfe60d/lap/lapmod.py#L275) for details.\n\n```python\nimport numpy as np, lap, time\n\nn, m = 5000, 5000\ncm = np.random.rand(n, m)\n\nt0 = time.time()\nc1, x1, y1 = lap.lapjv(cm, return_cost=True)\nprint(f\"lapjv: cost={c1:.6f}, time={time.time()-t0:.4f}s\")\n\ncc, kk, ii = cm.ravel(), np.tile(np.arange(m), n), np.arange(0, n*m+1, m)\nt1 = time.time()\nc2, x2, y2 = lap.lapmod(n, cc, ii, kk, return_cost=True)\nprint(f\"lapmod: cost={c2:.6f}, time={time.time()-t1:.4f}s\")\nprint(\"Assignments identical?\", (np.all(x1 == x2) and np.all(y1 == y2)))\n```\n\n</details>\n\n## \ud83c\udfc6 Quick Benchmark\n\nTo run a quick benchmark or see some interesting results, please check [benchmark.md](https://github.com/rathaROG/lapx/blob/main/benchmark.md).\n\n## \ud83d\udcdd License\n\nPlease refer to [NOTICE](https://github.com/rathaROG/lapx/blob/main/NOTICE) & [LICENSE](https://github.com/rathaROG/lapx/blob/main/LICENSE).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Linear assignment problem solvers",
"version": "0.7.1",
"project_urls": {
"Homepage": "https://github.com/rathaROG/lapx"
},
"split_keywords": [
"linear assignment problem solver",
" lap solver",
" jonker-volgenant algorithm",
" lapjv",
" lapmod",
" lap",
" lapx",
" lapjvx",
" lapjvxa",
" lapjvc",
" lapjvs"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c203d59d026211fb6ae5a5b49acf7de07b329fbe968a0b3c59057ac22bc4baac",
"md5": "8f25cd6bfea637cad6096bc35771c7c4",
"sha256": "94a2105ee9f31463ea549db9bb925e04d16da4fd0fbf8251d2537eb822965e5e"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "8f25cd6bfea637cad6096bc35771c7c4",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 217622,
"upload_time": "2025-10-22T22:55:16",
"upload_time_iso_8601": "2025-10-22T22:55:16.722263Z",
"url": "https://files.pythonhosted.org/packages/c2/03/d59d026211fb6ae5a5b49acf7de07b329fbe968a0b3c59057ac22bc4baac/lapx-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "606b0be5b48c5658988ae6ad50a69cf1549047c81ebc7653ccd52ecc89b0fc66",
"md5": "7412df67f97e9be79816082ab1d62620",
"sha256": "417e186d58f49893f877f6490a9f6ed94bf6b8a23489ae31a7b72185d9a0a2bd"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "7412df67f97e9be79816082ab1d62620",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 205348,
"upload_time": "2025-10-22T22:55:18",
"upload_time_iso_8601": "2025-10-22T22:55:18.151601Z",
"url": "https://files.pythonhosted.org/packages/60/6b/0be5b48c5658988ae6ad50a69cf1549047c81ebc7653ccd52ecc89b0fc66/lapx-0.7.1-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "95c1223ed8527c99257ff8e023a4f154586e1f1c7888fb1835bc4ec92488c7b1",
"md5": "fec0d3e9a88d7b4d9aae505776a7acd4",
"sha256": "bc834c7dd41886b93f51ce9477d550450cab70d7e3a4c6790bc32799e380a7c3"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "fec0d3e9a88d7b4d9aae505776a7acd4",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 1908853,
"upload_time": "2025-10-22T22:55:19",
"upload_time_iso_8601": "2025-10-22T22:55:19.662607Z",
"url": "https://files.pythonhosted.org/packages/95/c1/223ed8527c99257ff8e023a4f154586e1f1c7888fb1835bc4ec92488c7b1/lapx-0.7.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3575c174ab8df9204aa874037057f4c48413395746ee0e4304e5a2ee6447858f",
"md5": "b3f471cf2b6159dc96b120c3aa2fd921",
"sha256": "9fcb927b0f56f34c3c6d57703d307d2983b325965add767e896e1de54afb3fe6"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b3f471cf2b6159dc96b120c3aa2fd921",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 1942807,
"upload_time": "2025-10-22T22:55:21",
"upload_time_iso_8601": "2025-10-22T22:55:21.425967Z",
"url": "https://files.pythonhosted.org/packages/35/75/c174ab8df9204aa874037057f4c48413395746ee0e4304e5a2ee6447858f/lapx-0.7.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eff90d2af63b96822512cf88508989bc0f47896339fe07f66dbc5acb475734aa",
"md5": "71e33c302cde825a88b2236dc7d5f490",
"sha256": "99dc9f605072309a0103f7f9ee1f0681789bd8c129dd6b8401d9609f944aef7f"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "71e33c302cde825a88b2236dc7d5f490",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 2853352,
"upload_time": "2025-10-22T22:55:23",
"upload_time_iso_8601": "2025-10-22T22:55:23.214318Z",
"url": "https://files.pythonhosted.org/packages/ef/f9/0d2af63b96822512cf88508989bc0f47896339fe07f66dbc5acb475734aa/lapx-0.7.1-cp310-cp310-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4c80c9554d703a75c2e8936ba9fc8bccce1970345a45e26e76c99c3626c8e784",
"md5": "335e630bae615e2424bc9d0b290b1612",
"sha256": "fc5e6794d02a0e74dd5c0b4046f8f6f1eab2a849a1e13fcdeee6f56819d34c96"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "335e630bae615e2424bc9d0b290b1612",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 2955630,
"upload_time": "2025-10-22T22:55:24",
"upload_time_iso_8601": "2025-10-22T22:55:24.527372Z",
"url": "https://files.pythonhosted.org/packages/4c/80/c9554d703a75c2e8936ba9fc8bccce1970345a45e26e76c99c3626c8e784/lapx-0.7.1-cp310-cp310-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "85a45c9d7a04fd32dc5a478618edeeb203489716f240b4a5a2950b637d30c69d",
"md5": "9a932354a02c3625981708904e5e4fbe",
"sha256": "82fe90cce7cfd4b024cf33c58e74edb23c6fdf8de1e109ba3ad0476894c5bcc3"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "9a932354a02c3625981708904e5e4fbe",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 200237,
"upload_time": "2025-10-22T22:55:26",
"upload_time_iso_8601": "2025-10-22T22:55:26.110372Z",
"url": "https://files.pythonhosted.org/packages/85/a4/5c9d7a04fd32dc5a478618edeeb203489716f240b4a5a2950b637d30c69d/lapx-0.7.1-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ad4ca935fb4342ad702ea158e38a6f255771fe48fd5269a014be2e69e9d16356",
"md5": "7a59c4dbe281c446c731a3e3b36f3842",
"sha256": "bb08a25b67113df27abdf86db1b841b96af47b5f3890b61fcc2184aee9b9c55b"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp310-cp310-win_arm64.whl",
"has_sig": false,
"md5_digest": "7a59c4dbe281c446c731a3e3b36f3842",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 169399,
"upload_time": "2025-10-22T22:55:27",
"upload_time_iso_8601": "2025-10-22T22:55:27.525997Z",
"url": "https://files.pythonhosted.org/packages/ad/4c/a935fb4342ad702ea158e38a6f255771fe48fd5269a014be2e69e9d16356/lapx-0.7.1-cp310-cp310-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9b4312c0984451a1b54191b293ab6cf52a16ffddba05e00c44497e40f33cf992",
"md5": "65b9350e26261264e94b2ff6ed567881",
"sha256": "cb90d49e5819779f55e01fd61c4ae04292e7bf2e310fd11d895a7388203bdf0b"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "65b9350e26261264e94b2ff6ed567881",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 218387,
"upload_time": "2025-10-22T22:55:28",
"upload_time_iso_8601": "2025-10-22T22:55:28.645479Z",
"url": "https://files.pythonhosted.org/packages/9b/43/12c0984451a1b54191b293ab6cf52a16ffddba05e00c44497e40f33cf992/lapx-0.7.1-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d2b752eb44aea2dae8d051ccd6498b021eb2da31da18585680dda6518ba1cd63",
"md5": "5135711e3a502cec76378485466b19dd",
"sha256": "7e6489101cdb3d9bc14ee1c7cd3d895a6b8285090eb8ae0559a9abdee6aa8f7d"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "5135711e3a502cec76378485466b19dd",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 206798,
"upload_time": "2025-10-22T22:55:30",
"upload_time_iso_8601": "2025-10-22T22:55:30.229246Z",
"url": "https://files.pythonhosted.org/packages/d2/b7/52eb44aea2dae8d051ccd6498b021eb2da31da18585680dda6518ba1cd63/lapx-0.7.1-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6bbf94f54d528687401cdaeae99dea70ba941ef65d14b119a2d0d295c28410e0",
"md5": "989c2ab9558fb68735c662b0c23a6825",
"sha256": "3cc40298e9686662b0ef8591b991599c3e42a8d84e9ff120b890f3969ee72327"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "989c2ab9558fb68735c662b0c23a6825",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 1949051,
"upload_time": "2025-10-22T22:55:31",
"upload_time_iso_8601": "2025-10-22T22:55:31.453850Z",
"url": "https://files.pythonhosted.org/packages/6b/bf/94f54d528687401cdaeae99dea70ba941ef65d14b119a2d0d295c28410e0/lapx-0.7.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "30e6ae081469c83f745c0e48c1657ea154651ed06f6000ae2d1bbf89c1f05651",
"md5": "e6e58632db1b2136e0ad31c7e37c89c8",
"sha256": "d64bf24acc6f580e0714fd456d3395f8306ffc2a46c448b6369ec6b78a0f545d"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e6e58632db1b2136e0ad31c7e37c89c8",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 1980856,
"upload_time": "2025-10-22T22:55:33",
"upload_time_iso_8601": "2025-10-22T22:55:33.196425Z",
"url": "https://files.pythonhosted.org/packages/30/e6/ae081469c83f745c0e48c1657ea154651ed06f6000ae2d1bbf89c1f05651/lapx-0.7.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "96d56268ed69c4d4072ea019cd4fb05adfc3b2b50034307f696ff197e112196d",
"md5": "cc04d3524c37a46e54a895640b2807b4",
"sha256": "949cf679f7b303b9b4a93ce6793d358ae3520c39e734f8b1746d5fc1f672f5e1"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "cc04d3524c37a46e54a895640b2807b4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 2897061,
"upload_time": "2025-10-22T22:55:34",
"upload_time_iso_8601": "2025-10-22T22:55:34.832410Z",
"url": "https://files.pythonhosted.org/packages/96/d5/6268ed69c4d4072ea019cd4fb05adfc3b2b50034307f696ff197e112196d/lapx-0.7.1-cp311-cp311-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aa4f669d3471713814ae1618faf434e73e21b4072cadbff07b2eb91bc53fe5c7",
"md5": "9f36f7d10a61bc1839712fbde9ee4ffd",
"sha256": "35c32269979b40c53d116173b2ab4937b10e402a280a68930a6677c042d0bd45"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "9f36f7d10a61bc1839712fbde9ee4ffd",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 2999337,
"upload_time": "2025-10-22T22:55:36",
"upload_time_iso_8601": "2025-10-22T22:55:36.552399Z",
"url": "https://files.pythonhosted.org/packages/aa/4f/669d3471713814ae1618faf434e73e21b4072cadbff07b2eb91bc53fe5c7/lapx-0.7.1-cp311-cp311-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7b3abcaa4d7b9baf2bc951e3a604ee6b6fcb8b2e8219aff3153bfafc3e38cbaf",
"md5": "107a92ee1d1508c07c0787727a64c4b6",
"sha256": "56f61b0d116e4e0eb7ab7c3918628cfa1b68ac5fb0ce50eb3bc70a8081ba4edc"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "107a92ee1d1508c07c0787727a64c4b6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 201077,
"upload_time": "2025-10-22T22:55:38",
"upload_time_iso_8601": "2025-10-22T22:55:38.135561Z",
"url": "https://files.pythonhosted.org/packages/7b/3a/bcaa4d7b9baf2bc951e3a604ee6b6fcb8b2e8219aff3153bfafc3e38cbaf/lapx-0.7.1-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "900faeb923191a629cbfd7aace5b0d7ffac4d703d9a3b86559496f825df3eee3",
"md5": "782f8640ef35fa9bb58bf51878eacb33",
"sha256": "0823b7c093c102ce15f35e4e3566c0932299f10dee3828e9669db9d4292b26ad"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp311-cp311-win_arm64.whl",
"has_sig": false,
"md5_digest": "782f8640ef35fa9bb58bf51878eacb33",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 170148,
"upload_time": "2025-10-22T22:55:39",
"upload_time_iso_8601": "2025-10-22T22:55:39.242176Z",
"url": "https://files.pythonhosted.org/packages/90/0f/aeb923191a629cbfd7aace5b0d7ffac4d703d9a3b86559496f825df3eee3/lapx-0.7.1-cp311-cp311-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "97e8c9f46f74dfcd08fb7aaaad0f44310a70519f346f4e3a4a60f42a600a2b12",
"md5": "70fc6b76d0501065e600ab930ae84f2b",
"sha256": "3110aebd3b8f6966849415c44639dfd006e9e135e19abd4f4d88333ece817fe9"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "70fc6b76d0501065e600ab930ae84f2b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 218283,
"upload_time": "2025-10-22T22:55:40",
"upload_time_iso_8601": "2025-10-22T22:55:40.717051Z",
"url": "https://files.pythonhosted.org/packages/97/e8/c9f46f74dfcd08fb7aaaad0f44310a70519f346f4e3a4a60f42a600a2b12/lapx-0.7.1-cp312-cp312-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6b84806965cdf308f7248298ad6eeba9df55c40ef821296d22b6f5eb52a5d103",
"md5": "01d95332b887a82a04ecbaa581826ab0",
"sha256": "dc70d42188d0ea200a755316fa81a410a80a66b7259f67d996c1dc9d60056832"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "01d95332b887a82a04ecbaa581826ab0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 206790,
"upload_time": "2025-10-22T22:55:42",
"upload_time_iso_8601": "2025-10-22T22:55:42.127126Z",
"url": "https://files.pythonhosted.org/packages/6b/84/806965cdf308f7248298ad6eeba9df55c40ef821296d22b6f5eb52a5d103/lapx-0.7.1-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4883e9b8ad5e689c7320adb2498404adcd8b8dbe115132d2c6deee64438c67f2",
"md5": "cca8c3adef1e4860482288aabf5bfb39",
"sha256": "be6e86e38b5ee74f422508188fafe093e4d4019d6c5369c291087f18221729b4"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "cca8c3adef1e4860482288aabf5bfb39",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 1980832,
"upload_time": "2025-10-22T22:55:43",
"upload_time_iso_8601": "2025-10-22T22:55:43.681881Z",
"url": "https://files.pythonhosted.org/packages/48/83/e9b8ad5e689c7320adb2498404adcd8b8dbe115132d2c6deee64438c67f2/lapx-0.7.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5316051626e805d14e4d344e500d7292d58f7d78c81ecbaa1b74faac4c83e88a",
"md5": "be6e721ee3b4ccf58390232d8e263cd3",
"sha256": "5a22f79762b77ba63254eb20424cecf43f1803edc73bf8c26d4374093bb60411"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "be6e721ee3b4ccf58390232d8e263cd3",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 2017924,
"upload_time": "2025-10-22T22:55:45",
"upload_time_iso_8601": "2025-10-22T22:55:45.562213Z",
"url": "https://files.pythonhosted.org/packages/53/16/051626e805d14e4d344e500d7292d58f7d78c81ecbaa1b74faac4c83e88a/lapx-0.7.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "527d085136041ab6048a1992b60827442efcc2b55fd8ed1873ca2e038bd9cdd9",
"md5": "5e36757594ff362f44696de1163c7cee",
"sha256": "8af919e9d2bf51aea3381f56e0318ce3692338664ae0e9e51d06cf9729345305"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "5e36757594ff362f44696de1163c7cee",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 2917538,
"upload_time": "2025-10-22T22:55:46",
"upload_time_iso_8601": "2025-10-22T22:55:46.922362Z",
"url": "https://files.pythonhosted.org/packages/52/7d/085136041ab6048a1992b60827442efcc2b55fd8ed1873ca2e038bd9cdd9/lapx-0.7.1-cp312-cp312-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "83f7b7703ee5cc326091c2d3eae07e8e4fcf9c26c2206858ff6bb16b6ef8e9cf",
"md5": "3c87dc721b35be00a221a08f55390970",
"sha256": "94351359138df3e3b4ba87e5d7bc74229187bdac9a2a24731a2685c87397967b"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "3c87dc721b35be00a221a08f55390970",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 3021695,
"upload_time": "2025-10-22T22:55:48",
"upload_time_iso_8601": "2025-10-22T22:55:48.390977Z",
"url": "https://files.pythonhosted.org/packages/83/f7/b7703ee5cc326091c2d3eae07e8e4fcf9c26c2206858ff6bb16b6ef8e9cf/lapx-0.7.1-cp312-cp312-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1b7c26ecebb1361a5866460525d3de3265bcac840005b65cbe31c9b6615dd76b",
"md5": "4c4428a50e6216982094819c73776ac1",
"sha256": "d6cce7ddcd21d683ed082c81a2d86b1a179d05a1a829e3733be70bd6ba3068a0"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "4c4428a50e6216982094819c73776ac1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 199274,
"upload_time": "2025-10-22T22:55:49",
"upload_time_iso_8601": "2025-10-22T22:55:49.907282Z",
"url": "https://files.pythonhosted.org/packages/1b/7c/26ecebb1361a5866460525d3de3265bcac840005b65cbe31c9b6615dd76b/lapx-0.7.1-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "10ec2cf4f680df8b11ce36add479beb60498a91d9282cfbe1a7c1a5911222ec5",
"md5": "85b472b5398b13d8478028d83e6f342c",
"sha256": "f83cd30806fdb3d1056b3e528881308bcbda2b90b1ffdf88e1671c4d1c773e2c"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp312-cp312-win_arm64.whl",
"has_sig": false,
"md5_digest": "85b472b5398b13d8478028d83e6f342c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 168088,
"upload_time": "2025-10-22T22:55:51",
"upload_time_iso_8601": "2025-10-22T22:55:51.099036Z",
"url": "https://files.pythonhosted.org/packages/10/ec/2cf4f680df8b11ce36add479beb60498a91d9282cfbe1a7c1a5911222ec5/lapx-0.7.1-cp312-cp312-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "918af5e9fcb9ac1dff0d51b2445a59cbf21859358a70a42fd55c0f238b43d65d",
"md5": "b94f2201ff871901b28eee2b41b66536",
"sha256": "0def78c255abd11e6fe12e8a68524fbb150b190d21d6dab2afb677b5072365c9"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "b94f2201ff871901b28eee2b41b66536",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 216744,
"upload_time": "2025-10-22T22:55:52",
"upload_time_iso_8601": "2025-10-22T22:55:52.789578Z",
"url": "https://files.pythonhosted.org/packages/91/8a/f5e9fcb9ac1dff0d51b2445a59cbf21859358a70a42fd55c0f238b43d65d/lapx-0.7.1-cp313-cp313-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2b64e21edc9e51c956e351040f323c3b917e85350c921f2f607009939e343e10",
"md5": "29d21acc0f294dc2bbacce2270e8a377",
"sha256": "ea52c058b3d5486efc69856a77a4e524859a654c6154657716c2deff81159eab"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "29d21acc0f294dc2bbacce2270e8a377",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 205356,
"upload_time": "2025-10-22T22:55:54",
"upload_time_iso_8601": "2025-10-22T22:55:54.207188Z",
"url": "https://files.pythonhosted.org/packages/2b/64/e21edc9e51c956e351040f323c3b917e85350c921f2f607009939e343e10/lapx-0.7.1-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b2c75761337b30dee2c5495b84d16c84c363cea6f939089831fea5a23f5a3a8c",
"md5": "ffe1fb93586b6be24d27ab23f88a2535",
"sha256": "c058da50856324070ace6185fce50ae979601549e83bff09cfeeb700508a2b91"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "ffe1fb93586b6be24d27ab23f88a2535",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 1964398,
"upload_time": "2025-10-22T22:55:55",
"upload_time_iso_8601": "2025-10-22T22:55:55.801270Z",
"url": "https://files.pythonhosted.org/packages/b2/c7/5761337b30dee2c5495b84d16c84c363cea6f939089831fea5a23f5a3a8c/lapx-0.7.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a3e2be64bbed4d5af92c14ec00b5e030ee7a606397cfdf10fa2ac90148929c74",
"md5": "d1e5ae14f1604e327d71cf055b17cfc5",
"sha256": "bfb03568d8183c181efec944bb9b83995565660dec1ed51a7e3d7dec2ecb0a87"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d1e5ae14f1604e327d71cf055b17cfc5",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 2002455,
"upload_time": "2025-10-22T22:55:57",
"upload_time_iso_8601": "2025-10-22T22:55:57.585949Z",
"url": "https://files.pythonhosted.org/packages/a3/e2/be64bbed4d5af92c14ec00b5e030ee7a606397cfdf10fa2ac90148929c74/lapx-0.7.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6389cc6a81fab33709225180a604f4a8688d148fa0929e568435646cbb3e71a6",
"md5": "daf9de29cefc6c4f8b2612f2a439907d",
"sha256": "110b59d07a776feda1e81f48a168b7c9410b4df77f18de6cfe5b1da42e9221c1"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "daf9de29cefc6c4f8b2612f2a439907d",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 2895926,
"upload_time": "2025-10-22T22:55:59",
"upload_time_iso_8601": "2025-10-22T22:55:59.292618Z",
"url": "https://files.pythonhosted.org/packages/63/89/cc6a81fab33709225180a604f4a8688d148fa0929e568435646cbb3e71a6/lapx-0.7.1-cp313-cp313-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "45a40dfd94b8b71762d571ee86c292025743c27600949c4869e5a0f014e89f07",
"md5": "f79e5ebb8378385124d53a4ae59dc29d",
"sha256": "5aa56d771791b14a1899de0589a4c36a12409b5b95761e080e393fb594f1547a"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "f79e5ebb8378385124d53a4ae59dc29d",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 2998126,
"upload_time": "2025-10-22T22:56:00",
"upload_time_iso_8601": "2025-10-22T22:56:00.883363Z",
"url": "https://files.pythonhosted.org/packages/45/a4/0dfd94b8b71762d571ee86c292025743c27600949c4869e5a0f014e89f07/lapx-0.7.1-cp313-cp313-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a0e0340c26639a6d6db5995a420caaa4efa70960ca0a9a940e0936ab51ca3306",
"md5": "bded4a2d41c202243f99ccdd262be135",
"sha256": "b307370fc71c576fe78a7110e950fe6f8327f8aca4cef99bac120fc64b19d3b7"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "bded4a2d41c202243f99ccdd262be135",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 198148,
"upload_time": "2025-10-22T22:56:02",
"upload_time_iso_8601": "2025-10-22T22:56:02.664965Z",
"url": "https://files.pythonhosted.org/packages/a0/e0/340c26639a6d6db5995a420caaa4efa70960ca0a9a940e0936ab51ca3306/lapx-0.7.1-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ed57a815cf484be4d2838ec5376cddd404b8aa161c96d4f6a983ea908bef5e00",
"md5": "ed858aa97ada63c63bd04663c2ea427e",
"sha256": "57c928639b037e0f1ba7af6347f047e6d824959d2372eae97b6141f846cd3968"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp313-cp313-win_arm64.whl",
"has_sig": false,
"md5_digest": "ed858aa97ada63c63bd04663c2ea427e",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 167221,
"upload_time": "2025-10-22T22:56:03",
"upload_time_iso_8601": "2025-10-22T22:56:03.769550Z",
"url": "https://files.pythonhosted.org/packages/ed/57/a815cf484be4d2838ec5376cddd404b8aa161c96d4f6a983ea908bef5e00/lapx-0.7.1-cp313-cp313-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "39a2305f8e15a1582d4e085490aa6cde081137bd2ae9092fe410d7ff1fb685ca",
"md5": "cfe91e2ea185cbd38d773138f8d9392e",
"sha256": "42042a412c9d6c76c39967daf423c3caa462d0d692a813793623c57fe0717c71"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "cfe91e2ea185cbd38d773138f8d9392e",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 216475,
"upload_time": "2025-10-22T22:56:04",
"upload_time_iso_8601": "2025-10-22T22:56:04.858276Z",
"url": "https://files.pythonhosted.org/packages/39/a2/305f8e15a1582d4e085490aa6cde081137bd2ae9092fe410d7ff1fb685ca/lapx-0.7.1-cp314-cp314-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7b3434afc0902b2e9ea12fd0cdf91f0ebe88d90685be8b6fa2f47e89a344cf94",
"md5": "7ec044d2dd6424f2278709dbb3e30871",
"sha256": "2adb012484f69311a747422ee07b16fc664ea0c8b3227b08be76b2408b606765"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "7ec044d2dd6424f2278709dbb3e30871",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 205680,
"upload_time": "2025-10-22T22:56:06",
"upload_time_iso_8601": "2025-10-22T22:56:06.324368Z",
"url": "https://files.pythonhosted.org/packages/7b/34/34afc0902b2e9ea12fd0cdf91f0ebe88d90685be8b6fa2f47e89a344cf94/lapx-0.7.1-cp314-cp314-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6341498aa1a48fb76225d1bf4dd6e406fddf6774237d1c02125b16c198260d3d",
"md5": "666f9570a4413a0756dcb8e624c9c0f5",
"sha256": "2f2b8ec9336be8e28b9571a33ab26cb291818c8b5599d2403411dc9dcf185030"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "666f9570a4413a0756dcb8e624c9c0f5",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 1963797,
"upload_time": "2025-10-22T22:56:07",
"upload_time_iso_8601": "2025-10-22T22:56:07.535642Z",
"url": "https://files.pythonhosted.org/packages/63/41/498aa1a48fb76225d1bf4dd6e406fddf6774237d1c02125b16c198260d3d/lapx-0.7.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7e51d5ab40fb71be17e5d76a83ac197dc0999d8ff656f6676c64f3cfa6c6279d",
"md5": "5b981e697c01f851734f8b30a8df660e",
"sha256": "0a89da788f55d5bb8f1d99e2207e4eee270c187b4b08ceaacf40f1f2e84dc3fc"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "5b981e697c01f851734f8b30a8df660e",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 1995745,
"upload_time": "2025-10-22T22:56:09",
"upload_time_iso_8601": "2025-10-22T22:56:09.364034Z",
"url": "https://files.pythonhosted.org/packages/7e/51/d5ab40fb71be17e5d76a83ac197dc0999d8ff656f6676c64f3cfa6c6279d/lapx-0.7.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1ca04abae9066fa022973af12ab16aaaf5b8530db593516e9523822ecb8723d7",
"md5": "faf38a44adf56918fd37e280f49cd31c",
"sha256": "0f0b885e012988bf8a2478d523e3754cd6dab2c8af62ffb77de0ae7ece4899ec"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "faf38a44adf56918fd37e280f49cd31c",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 2895923,
"upload_time": "2025-10-22T22:56:11",
"upload_time_iso_8601": "2025-10-22T22:56:11.159116Z",
"url": "https://files.pythonhosted.org/packages/1c/a0/4abae9066fa022973af12ab16aaaf5b8530db593516e9523822ecb8723d7/lapx-0.7.1-cp314-cp314-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5b64e3c8456f89f0b5f0b21f4cc6668d0f34704b8fa3becd81f37a0bff296853",
"md5": "ed8c5edf8f191acf60914b38b5745e89",
"sha256": "f6fc81be122a71904c9739a7e33dbe4b2ecf641a188bb11c3d7ba95a68eabcda"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "ed8c5edf8f191acf60914b38b5745e89",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 2994226,
"upload_time": "2025-10-22T22:56:12",
"upload_time_iso_8601": "2025-10-22T22:56:12.638776Z",
"url": "https://files.pythonhosted.org/packages/5b/64/e3c8456f89f0b5f0b21f4cc6668d0f34704b8fa3becd81f37a0bff296853/lapx-0.7.1-cp314-cp314-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "94296549591069908770480ca312481241174417513f774706f87e1e5ca05345",
"md5": "6b9ac16c3af0f78b2f6cb9d9ad3f0f68",
"sha256": "2b124bc6b591877062628f7c9b54aec849c34628d672ed5afb3e105212b6b692"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-win_amd64.whl",
"has_sig": false,
"md5_digest": "6b9ac16c3af0f78b2f6cb9d9ad3f0f68",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 202987,
"upload_time": "2025-10-22T22:56:13",
"upload_time_iso_8601": "2025-10-22T22:56:13.927196Z",
"url": "https://files.pythonhosted.org/packages/94/29/6549591069908770480ca312481241174417513f774706f87e1e5ca05345/lapx-0.7.1-cp314-cp314-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2f493378e322c8232a45d095123a27ad070b9c5ab9bf05ea1ad32d456b9ff6b3",
"md5": "757e00e6bd384a80282a8d415d1dc5f3",
"sha256": "a0666f9a1e5d967c8136f9cd5b7df997055b3823a63dc00b184aaa2b0b2b9700"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp314-cp314-win_arm64.whl",
"has_sig": false,
"md5_digest": "757e00e6bd384a80282a8d415d1dc5f3",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.7",
"size": 172769,
"upload_time": "2025-10-22T22:56:15",
"upload_time_iso_8601": "2025-10-22T22:56:15.185468Z",
"url": "https://files.pythonhosted.org/packages/2f/49/3378e322c8232a45d095123a27ad070b9c5ab9bf05ea1ad32d456b9ff6b3/lapx-0.7.1-cp314-cp314-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "45f59731fb779e46f519de2b1f5fa0dbb4bd31b419b73d4a031e6bd7db586adb",
"md5": "21fc75c235d03ef2d55ba25edfd24f06",
"sha256": "3a218d8974c1408e508c50ffc96a6c7592ab42e1e58ed85fbce2eb5dcc1a37ed"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "21fc75c235d03ef2d55ba25edfd24f06",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 206004,
"upload_time": "2025-10-22T22:56:16",
"upload_time_iso_8601": "2025-10-22T22:56:16.715456Z",
"url": "https://files.pythonhosted.org/packages/45/f5/9731fb779e46f519de2b1f5fa0dbb4bd31b419b73d4a031e6bd7db586adb/lapx-0.7.1-cp37-cp37m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fefeb5958f471d37dbebcc1f72c7d618b42ddf8ca1439f4b364692475a03dbf0",
"md5": "0fa84aa59cf095129a4a870ee1b9a03f",
"sha256": "711179c481b87d25e647ed2365a726e686d83e63a81b622d6bad33f5c0f26e37"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "0fa84aa59cf095129a4a870ee1b9a03f",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 1770076,
"upload_time": "2025-10-22T22:56:17",
"upload_time_iso_8601": "2025-10-22T22:56:17.928968Z",
"url": "https://files.pythonhosted.org/packages/fe/fe/b5958f471d37dbebcc1f72c7d618b42ddf8ca1439f4b364692475a03dbf0/lapx-0.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "62ebc63670565e3bdef435c8cf3f46ecb72b278a48d54ef75d08e08b17f9b218",
"md5": "081e809e0c8488e59dafcd5db02c0d8f",
"sha256": "9b5e375cefa83863b22406870e5ae65334497305cc7e019700d023638cba6a45"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "081e809e0c8488e59dafcd5db02c0d8f",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 1787288,
"upload_time": "2025-10-22T22:56:19",
"upload_time_iso_8601": "2025-10-22T22:56:19.351944Z",
"url": "https://files.pythonhosted.org/packages/62/eb/c63670565e3bdef435c8cf3f46ecb72b278a48d54ef75d08e08b17f9b218/lapx-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c7fac6c0357eabbe562d0305507f1e06f3851dc7f2272dd86d95384e488fce1f",
"md5": "cb0539623bd4ee868f8b70f855c03d6f",
"sha256": "bbf14abbb8f56dbf5cde93d35dd732f284a1f11a4769d90b5adf6dde853b4016"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "cb0539623bd4ee868f8b70f855c03d6f",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 2722740,
"upload_time": "2025-10-22T22:56:20",
"upload_time_iso_8601": "2025-10-22T22:56:20.938932Z",
"url": "https://files.pythonhosted.org/packages/c7/fa/c6c0357eabbe562d0305507f1e06f3851dc7f2272dd86d95384e488fce1f/lapx-0.7.1-cp37-cp37m-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ba4d8bb32034462d7dcf02f4dd4ff72e812e8d17ebc7e06dca4b43d3ef399cd1",
"md5": "6c635ec9379d1728ab4a53d3645db592",
"sha256": "ee1dc42acaa4819b982c0c7b6663d0ff6ae5c8389226dff9fb877056d4433a8c"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "6c635ec9379d1728ab4a53d3645db592",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 2821238,
"upload_time": "2025-10-22T22:56:22",
"upload_time_iso_8601": "2025-10-22T22:56:22.634351Z",
"url": "https://files.pythonhosted.org/packages/ba/4d/8bb32034462d7dcf02f4dd4ff72e812e8d17ebc7e06dca4b43d3ef399cd1/lapx-0.7.1-cp37-cp37m-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ffcada33bd0887bb7d0f3a8b8649a6a29f19174e6ce2bd582d9297b92c85027e",
"md5": "a07afd1717aea8e12e53cd7273c7a5fa",
"sha256": "897e824a4c555026cc080538598a60b484db8af4dcb5022be635ca754897aae1"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp37-cp37m-win_amd64.whl",
"has_sig": false,
"md5_digest": "a07afd1717aea8e12e53cd7273c7a5fa",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 193801,
"upload_time": "2025-10-22T22:56:24",
"upload_time_iso_8601": "2025-10-22T22:56:24.045541Z",
"url": "https://files.pythonhosted.org/packages/ff/ca/da33bd0887bb7d0f3a8b8649a6a29f19174e6ce2bd582d9297b92c85027e/lapx-0.7.1-cp37-cp37m-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e0e050a33c46c96b2874d25f224481080290a065c2c8a2144bbdbd19a483fb78",
"md5": "8e7bd8ce5d0552735f4a79173a6029ed",
"sha256": "d87eb15b97718f9fa9df5e5e9666cd7f29cd0c9654603b28cce1db05fa4224cb"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "8e7bd8ce5d0552735f4a79173a6029ed",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 219806,
"upload_time": "2025-10-22T22:56:25",
"upload_time_iso_8601": "2025-10-22T22:56:25.224078Z",
"url": "https://files.pythonhosted.org/packages/e0/e0/50a33c46c96b2874d25f224481080290a065c2c8a2144bbdbd19a483fb78/lapx-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f61ecc8bb922317e9b5af263d44f11d001d97759bfe103ae3e9917b3fda77267",
"md5": "eb244eb8ad434c15d99141923a85f457",
"sha256": "6596992d21e3d5f87d2970d90e6d60c92f9edec185498edf0831ff4b71898fd4"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "eb244eb8ad434c15d99141923a85f457",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 207976,
"upload_time": "2025-10-22T22:56:26",
"upload_time_iso_8601": "2025-10-22T22:56:26.555619Z",
"url": "https://files.pythonhosted.org/packages/f6/1e/cc8bb922317e9b5af263d44f11d001d97759bfe103ae3e9917b3fda77267/lapx-0.7.1-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0d39ee08a9a0975841e42471507429e7e04e0afd1bec54f4bdcfda12a06eeb9c",
"md5": "15c6dc01933c2d4f39840ad51af6ae06",
"sha256": "c3ce54f001bf37cb3d477b42c3295d360559c2c7ed6b3a5f215d454c31757f9f"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "15c6dc01933c2d4f39840ad51af6ae06",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 1896457,
"upload_time": "2025-10-22T22:56:28",
"upload_time_iso_8601": "2025-10-22T22:56:28.037037Z",
"url": "https://files.pythonhosted.org/packages/0d/39/ee08a9a0975841e42471507429e7e04e0afd1bec54f4bdcfda12a06eeb9c/lapx-0.7.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8262abb1d78fd8a291c015c70b9a84b8608e2d25a08f081ec0946415f3a7c553",
"md5": "d7025e816cd000119ec35332b71a5dcf",
"sha256": "5c23eb905ee64696139cbf54b43aa0680abb7bd0c12cd06707a2cd292b90f922"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d7025e816cd000119ec35332b71a5dcf",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 1924039,
"upload_time": "2025-10-22T22:56:29",
"upload_time_iso_8601": "2025-10-22T22:56:29.493017Z",
"url": "https://files.pythonhosted.org/packages/82/62/abb1d78fd8a291c015c70b9a84b8608e2d25a08f081ec0946415f3a7c553/lapx-0.7.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "05dddcb743eab083197261de4511b05b0b703d4ff27c74ccc634c5d0e2f16751",
"md5": "9b90b6da1d7b7f68926b76910e210280",
"sha256": "a0dc94c8121ded55b4fc6102cb78a8abb183aad355c1a65d841a2616dbe59cb1"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "9b90b6da1d7b7f68926b76910e210280",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 2841161,
"upload_time": "2025-10-22T22:56:30",
"upload_time_iso_8601": "2025-10-22T22:56:30.974455Z",
"url": "https://files.pythonhosted.org/packages/05/dd/dcb743eab083197261de4511b05b0b703d4ff27c74ccc634c5d0e2f16751/lapx-0.7.1-cp38-cp38-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "33f9f8ece2d5e2d94fe6a3aeb0935632c8de1829d75c1373e8075b069ce80e1c",
"md5": "e6da81cf91e16d9504654a30e2ae7da7",
"sha256": "7f51b590c136fdf3711e7a8712e166602a9f381ee4b4911ed2f38132b9e49835"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "e6da81cf91e16d9504654a30e2ae7da7",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 2936676,
"upload_time": "2025-10-22T22:56:32",
"upload_time_iso_8601": "2025-10-22T22:56:32.866597Z",
"url": "https://files.pythonhosted.org/packages/33/f9/f8ece2d5e2d94fe6a3aeb0935632c8de1829d75c1373e8075b069ce80e1c/lapx-0.7.1-cp38-cp38-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "166d1fbda8e378777138b905750c755b6ab8757e429c373fc2db75508fe47b76",
"md5": "37d307efc520112b98e7c45b83322148",
"sha256": "58f804a99c3f989baddab150f40099000f79856f7d73127b71b8c7769d33efda"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "37d307efc520112b98e7c45b83322148",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 202075,
"upload_time": "2025-10-22T22:56:34",
"upload_time_iso_8601": "2025-10-22T22:56:34.561062Z",
"url": "https://files.pythonhosted.org/packages/16/6d/1fbda8e378777138b905750c755b6ab8757e429c373fc2db75508fe47b76/lapx-0.7.1-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d70c8fcf20e282d38c5f4b292b8c21bf5bcad3b51f832b6ef45822bb663f63a3",
"md5": "4922caa7f9a90324b5c9cee7d2acc10e",
"sha256": "7d359bb9a1ae53a4e4fb04fe84492f156e6e069814b10aa14c696130beaf51e8"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "4922caa7f9a90324b5c9cee7d2acc10e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 218299,
"upload_time": "2025-10-22T22:56:35",
"upload_time_iso_8601": "2025-10-22T22:56:35.821473Z",
"url": "https://files.pythonhosted.org/packages/d7/0c/8fcf20e282d38c5f4b292b8c21bf5bcad3b51f832b6ef45822bb663f63a3/lapx-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "22d4c4c2289ee09b8597d7f856a2c730d2bdd766d7d5280eb77415522b837998",
"md5": "38da4d678bf65d7b94a59acce8de41c1",
"sha256": "3bd9f0c139f3025c08a1d0b022a38b9fb1ab3f81ef614ba7f83d1750c4aeac3d"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "38da4d678bf65d7b94a59acce8de41c1",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 206001,
"upload_time": "2025-10-22T22:56:37",
"upload_time_iso_8601": "2025-10-22T22:56:37.032070Z",
"url": "https://files.pythonhosted.org/packages/22/d4/c4c2289ee09b8597d7f856a2c730d2bdd766d7d5280eb77415522b837998/lapx-0.7.1-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "32a7a22ec30a6421ced5f925e9f63c7bc981c21f72d3577beecaf359974b030c",
"md5": "abb9f6632ad790e687686dbf6fd62169",
"sha256": "77861654160f37cd164948801e9619157346fbd5397f799a494d98e227d9269e"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "abb9f6632ad790e687686dbf6fd62169",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 1909539,
"upload_time": "2025-10-22T22:56:38",
"upload_time_iso_8601": "2025-10-22T22:56:38.341387Z",
"url": "https://files.pythonhosted.org/packages/32/a7/a22ec30a6421ced5f925e9f63c7bc981c21f72d3577beecaf359974b030c/lapx-0.7.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b79a123fd01b8836eb435dae7661e0abf11e1bb66146d79eed060a901343582e",
"md5": "2fe2affbdc268879e927c3428a40327b",
"sha256": "f01eb7ca9bbedfeb7e6660df32e479fa2c3fbc935451ac0e3a9a2ba38cf7c3e6"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "2fe2affbdc268879e927c3428a40327b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 1944881,
"upload_time": "2025-10-22T22:56:39",
"upload_time_iso_8601": "2025-10-22T22:56:39.791250Z",
"url": "https://files.pythonhosted.org/packages/b7/9a/123fd01b8836eb435dae7661e0abf11e1bb66146d79eed060a901343582e/lapx-0.7.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e75c18dd1a8198d5039fa03abfa12bf6402509f8cdbdb1910ebb3b93c3f0d709",
"md5": "585af9319f4ddf15c4e277303ea6b451",
"sha256": "f0159731661891f683342167b30e6339d57b221a752449cb65a79833047ba9fb"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "585af9319f4ddf15c4e277303ea6b451",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 2855433,
"upload_time": "2025-10-22T22:56:41",
"upload_time_iso_8601": "2025-10-22T22:56:41.272905Z",
"url": "https://files.pythonhosted.org/packages/e7/5c/18dd1a8198d5039fa03abfa12bf6402509f8cdbdb1910ebb3b93c3f0d709/lapx-0.7.1-cp39-cp39-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b3e32681d576802d824b88bf1727a64ed4e02cb715a78ec37aa695d9a3d7fa75",
"md5": "4e362bb6f6d471cecfc9cafa71fe07c3",
"sha256": "87de54a822f03c53e77e6663f51775744f15af8ee0a68d5a77732ef1de388529"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "4e362bb6f6d471cecfc9cafa71fe07c3",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 2958544,
"upload_time": "2025-10-22T22:56:42",
"upload_time_iso_8601": "2025-10-22T22:56:42.929465Z",
"url": "https://files.pythonhosted.org/packages/b3/e3/2681d576802d824b88bf1727a64ed4e02cb715a78ec37aa695d9a3d7fa75/lapx-0.7.1-cp39-cp39-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5c0232e34efbbbd6016224f7892a61540a0bfd7b93f7491daeafea960f1bb46a",
"md5": "6220fb0378b3bcc62431d75ca94ebe03",
"sha256": "0499e74597ec9b0b6a0cafd3c3cf454b3d334c4f3963fd8c21259d3808f57e5a"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "6220fb0378b3bcc62431d75ca94ebe03",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 201273,
"upload_time": "2025-10-22T22:56:44",
"upload_time_iso_8601": "2025-10-22T22:56:44.358632Z",
"url": "https://files.pythonhosted.org/packages/5c/02/32e34efbbbd6016224f7892a61540a0bfd7b93f7491daeafea960f1bb46a/lapx-0.7.1-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e651215f56d0b9f27355e95c9a27a1edc6005451d46c00b1db6f1aae9d1f0e8f",
"md5": "ce95481875229d19739ead850a92c853",
"sha256": "4f6287338dccc821781098e7bd413b03c9ed92b8ffc629be77c0f9083544c456"
},
"downloads": -1,
"filename": "lapx-0.7.1-cp39-cp39-win_arm64.whl",
"has_sig": false,
"md5_digest": "ce95481875229d19739ead850a92c853",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 169677,
"upload_time": "2025-10-22T22:56:45",
"upload_time_iso_8601": "2025-10-22T22:56:45.552495Z",
"url": "https://files.pythonhosted.org/packages/e6/51/215f56d0b9f27355e95c9a27a1edc6005451d46c00b1db6f1aae9d1f0e8f/lapx-0.7.1-cp39-cp39-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "40b76a13b7978f9b1c9868ccf4c3bc55f0c020e76b1a010cd08418b315d90d42",
"md5": "2d2c6b10fda217fdc90c7b542b7c8d6d",
"sha256": "f2ebf14e4e635ae826e61d92f96572b4ee71e6059009286e1226b7de23b4bf88"
},
"downloads": -1,
"filename": "lapx-0.7.1.tar.gz",
"has_sig": false,
"md5_digest": "2d2c6b10fda217fdc90c7b542b7c8d6d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 223768,
"upload_time": "2025-10-22T22:56:46",
"upload_time_iso_8601": "2025-10-22T22:56:46.982575Z",
"url": "https://files.pythonhosted.org/packages/40/b7/6a13b7978f9b1c9868ccf4c3bc55f0c020e76b1a010cd08418b315d90d42/lapx-0.7.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-22 22:56:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rathaROG",
"github_project": "lapx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "lapx"
}