lassoreg


Namelassoreg JSON
Version 0.1.1 PyPI version JSON
download
home_page
SummaryMy wonderful Lasso Regression Python package
upload_time2023-12-08 14:24:40
maintainer
docs_urlNone
author
requires_python>=3.11
licenseMIT License
keywords statistics lasso lasso regression regression model statistical model
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Lasso Regression Package

[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)

## Overview

This Python package provides a simple implementation of Lasso Regression (L1 regularization) 
using the Python Standard Library and `NumPy`. Lasso Regression is a linear regression 
technique that adds a penalty term proportional to the absolute values of the regression 
coefficients, promoting sparsity in the model.

## Installation

```bash
pip install lassoreg
```

## Usage

```python
from lassoreg.regression import LassoRegression

# Create an instance of Lasso Regression
lasso_model = LassoRegression(alpha=0.01, max_iter=1000, tol=1e-4)

# Fit the model to training data
lasso_model.fit(X_train, y_train)

# Make predictions on new data
predictions = lasso_model.predict(X_test)
```

## Documentation

For detailed information on the parameters and methods, please refer to the docstring in the source code.

## Example

An example of generating synthetic data and fitting the Lasso Regression model is provided in the `example` directory.

```bash
cd example
python example.py
```

## Testing

To run the unit tests, use the following command:

```bash
pytest tests
```

## License

This package is licensed under the [MIT License](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "lassoreg",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "statistics,lasso,lasso regression,Regression,Model,Statistical Model",
    "author": "",
    "author_email": "Ramon Perez <ramon.perez@seldon.io>",
    "download_url": "https://files.pythonhosted.org/packages/a1/3f/0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f/lassoreg-0.1.1.tar.gz",
    "platform": null,
    "description": "\n# Lasso Regression Package\n\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)\n\n## Overview\n\nThis Python package provides a simple implementation of Lasso Regression (L1 regularization) \nusing the Python Standard Library and `NumPy`. Lasso Regression is a linear regression \ntechnique that adds a penalty term proportional to the absolute values of the regression \ncoefficients, promoting sparsity in the model.\n\n## Installation\n\n```bash\npip install lassoreg\n```\n\n## Usage\n\n```python\nfrom lassoreg.regression import LassoRegression\n\n# Create an instance of Lasso Regression\nlasso_model = LassoRegression(alpha=0.01, max_iter=1000, tol=1e-4)\n\n# Fit the model to training data\nlasso_model.fit(X_train, y_train)\n\n# Make predictions on new data\npredictions = lasso_model.predict(X_test)\n```\n\n## Documentation\n\nFor detailed information on the parameters and methods, please refer to the docstring in the source code.\n\n## Example\n\nAn example of generating synthetic data and fitting the Lasso Regression model is provided in the `example` directory.\n\n```bash\ncd example\npython example.py\n```\n\n## Testing\n\nTo run the unit tests, use the following command:\n\n```bash\npytest tests\n```\n\n## License\n\nThis package is licensed under the [MIT License](LICENSE).\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "My wonderful Lasso Regression Python package",
    "version": "0.1.1",
    "project_urls": {
        "Source": "https://github.com/ramonpzg/architecting_tools/tree/main/first_package"
    },
    "split_keywords": [
        "statistics",
        "lasso",
        "lasso regression",
        "regression",
        "model",
        "statistical model"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c66dffe9f92f7335eec0c0898243da713102a9ce82deeb21a6e6f38f142b2747",
                "md5": "a6ddbf9a9c1dc8ecd4ebf30ee691dafd",
                "sha256": "ca8567353116c2e12799dbc890c3f892fbac2d5b07a5857d88de6d9afd5c3b6f"
            },
            "downloads": -1,
            "filename": "lassoreg-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a6ddbf9a9c1dc8ecd4ebf30ee691dafd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 4639,
            "upload_time": "2023-12-08T14:24:06",
            "upload_time_iso_8601": "2023-12-08T14:24:06.891526Z",
            "url": "https://files.pythonhosted.org/packages/c6/6d/ffe9f92f7335eec0c0898243da713102a9ce82deeb21a6e6f38f142b2747/lassoreg-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a13f0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f",
                "md5": "7fadbc167432f07d4bdee142f25a3012",
                "sha256": "069cc67a597560c16d40947456cb57c41f4c3661bfc4cafb037f9b081b98f49c"
            },
            "downloads": -1,
            "filename": "lassoreg-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7fadbc167432f07d4bdee142f25a3012",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 4835,
            "upload_time": "2023-12-08T14:24:40",
            "upload_time_iso_8601": "2023-12-08T14:24:40.404447Z",
            "url": "https://files.pythonhosted.org/packages/a1/3f/0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f/lassoreg-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-08 14:24:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ramonpzg",
    "github_project": "architecting_tools",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "lassoreg"
}
        
Elapsed time: 0.23727s