# Lasso Regression Package
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
## Overview
This Python package provides a simple implementation of Lasso Regression (L1 regularization)
using the Python Standard Library and `NumPy`. Lasso Regression is a linear regression
technique that adds a penalty term proportional to the absolute values of the regression
coefficients, promoting sparsity in the model.
## Installation
```bash
pip install lassoreg
```
## Usage
```python
from lassoreg.regression import LassoRegression
# Create an instance of Lasso Regression
lasso_model = LassoRegression(alpha=0.01, max_iter=1000, tol=1e-4)
# Fit the model to training data
lasso_model.fit(X_train, y_train)
# Make predictions on new data
predictions = lasso_model.predict(X_test)
```
## Documentation
For detailed information on the parameters and methods, please refer to the docstring in the source code.
## Example
An example of generating synthetic data and fitting the Lasso Regression model is provided in the `example` directory.
```bash
cd example
python example.py
```
## Testing
To run the unit tests, use the following command:
```bash
pytest tests
```
## License
This package is licensed under the [MIT License](LICENSE).
Raw data
{
"_id": null,
"home_page": "",
"name": "lassoreg",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "statistics,lasso,lasso regression,Regression,Model,Statistical Model",
"author": "",
"author_email": "Ramon Perez <ramon.perez@seldon.io>",
"download_url": "https://files.pythonhosted.org/packages/a1/3f/0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f/lassoreg-0.1.1.tar.gz",
"platform": null,
"description": "\n# Lasso Regression Package\n\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)\n\n## Overview\n\nThis Python package provides a simple implementation of Lasso Regression (L1 regularization) \nusing the Python Standard Library and `NumPy`. Lasso Regression is a linear regression \ntechnique that adds a penalty term proportional to the absolute values of the regression \ncoefficients, promoting sparsity in the model.\n\n## Installation\n\n```bash\npip install lassoreg\n```\n\n## Usage\n\n```python\nfrom lassoreg.regression import LassoRegression\n\n# Create an instance of Lasso Regression\nlasso_model = LassoRegression(alpha=0.01, max_iter=1000, tol=1e-4)\n\n# Fit the model to training data\nlasso_model.fit(X_train, y_train)\n\n# Make predictions on new data\npredictions = lasso_model.predict(X_test)\n```\n\n## Documentation\n\nFor detailed information on the parameters and methods, please refer to the docstring in the source code.\n\n## Example\n\nAn example of generating synthetic data and fitting the Lasso Regression model is provided in the `example` directory.\n\n```bash\ncd example\npython example.py\n```\n\n## Testing\n\nTo run the unit tests, use the following command:\n\n```bash\npytest tests\n```\n\n## License\n\nThis package is licensed under the [MIT License](LICENSE).\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "My wonderful Lasso Regression Python package",
"version": "0.1.1",
"project_urls": {
"Source": "https://github.com/ramonpzg/architecting_tools/tree/main/first_package"
},
"split_keywords": [
"statistics",
"lasso",
"lasso regression",
"regression",
"model",
"statistical model"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c66dffe9f92f7335eec0c0898243da713102a9ce82deeb21a6e6f38f142b2747",
"md5": "a6ddbf9a9c1dc8ecd4ebf30ee691dafd",
"sha256": "ca8567353116c2e12799dbc890c3f892fbac2d5b07a5857d88de6d9afd5c3b6f"
},
"downloads": -1,
"filename": "lassoreg-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a6ddbf9a9c1dc8ecd4ebf30ee691dafd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 4639,
"upload_time": "2023-12-08T14:24:06",
"upload_time_iso_8601": "2023-12-08T14:24:06.891526Z",
"url": "https://files.pythonhosted.org/packages/c6/6d/ffe9f92f7335eec0c0898243da713102a9ce82deeb21a6e6f38f142b2747/lassoreg-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a13f0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f",
"md5": "7fadbc167432f07d4bdee142f25a3012",
"sha256": "069cc67a597560c16d40947456cb57c41f4c3661bfc4cafb037f9b081b98f49c"
},
"downloads": -1,
"filename": "lassoreg-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "7fadbc167432f07d4bdee142f25a3012",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 4835,
"upload_time": "2023-12-08T14:24:40",
"upload_time_iso_8601": "2023-12-08T14:24:40.404447Z",
"url": "https://files.pythonhosted.org/packages/a1/3f/0e79906d1921f351ad1139139baba34913e29b2c420cef47d6c54fa5351f/lassoreg-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-08 14:24:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ramonpzg",
"github_project": "architecting_tools",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "lassoreg"
}