latin-scansion


Namelatin-scansion JSON
Version 0.1.3 PyPI version JSON
download
home_pageNone
SummaryAutomated Latin scansion
upload_time2024-08-22 17:52:00
maintainerNone
docs_urlNone
authorJillian Chang
requires_python>=3.8
licenseNone
keywords latin computational linguistics language natural language processing phonetics phonology speech
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🏛️ Latin scansion engine 🏛️

[![Supported Python
versions](https://img.shields.io/pypi/pyversions/latin_scansion.svg)](https://pypi.org/project/latin_scansion)
[![CircleCI](https://circleci.com/gh/CUNY-CL/latin_scansion/tree/master.svg?style=svg)](https://circleci.com/gh/CUNY-CL/latin_scansion/tree/master)

This library uses finite-state grammars to automate Latin scansion, with an
initial focus on the dactylic hexameters of Virgil.

## License

The engine is released under an Apache 2.0 license. Please see
[LICENSE.txt](LICENSE.txt) for details.

## Installation

[Conda](http://conda.io) is recommended for a reproducible environment. Assuming
that Conda (either Miniconda or Anaconda) is available, the following command
creates the environment `scansion`.

    conda env create -f environment.yml

This only needs to be done once. The following command then activates the
environment.

    conda activate scansion

This second step needs to be repeated each time you start a new shell.

## Installation

1.  Compile the grammar assets:

        make -j -C grammars

2.  Generate the textproto library:

        make -C latin_scansion

3.  Install the Python library:

        pip install -e .

## Command-line tools

Installation produces two command-line tools:

-   [`latin-scan`](latin_scansion/cli/scan.py) scans a document, generating a
    human-readable
    [textproto](https://medium.com/@nathantnorth/protocol-buffers-text-format-14e0584f70a5)
    representation of document's scansion. Sample usage:

        latin-scan --far grammars/all.far data/Aeneid/Aeneid01.txt data/Aeneid/Aeneid01.textproto

-   [`latin-validate`](latin_scansion/cli/validate.py) validates (and
    optionally, canonicalizes) a textproto document scansion. Sample usage:

        latin-validate data/Aeneid/Aeneid01.textproto

## Testing

Run:

    pytest tests

## Authors

-   [Jillian Chang](jillianchang15@gmail.com)
-   [Kyle Gorman](kgorman@gc.cuny.edu)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "latin-scansion",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Latin, computational linguistics, language, natural language processing, phonetics, phonology, speech",
    "author": "Jillian Chang",
    "author_email": "Kyle Gorman <kylebgorman@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/88/97/63d37e8b88f8f00eb10fa9651d03b9e56e6e46a23674bfe3bcfc75b8567d/latin_scansion-0.1.3.tar.gz",
    "platform": null,
    "description": "# \ud83c\udfdb\ufe0f Latin scansion engine \ud83c\udfdb\ufe0f\n\n[![Supported Python\nversions](https://img.shields.io/pypi/pyversions/latin_scansion.svg)](https://pypi.org/project/latin_scansion)\n[![CircleCI](https://circleci.com/gh/CUNY-CL/latin_scansion/tree/master.svg?style=svg)](https://circleci.com/gh/CUNY-CL/latin_scansion/tree/master)\n\nThis library uses finite-state grammars to automate Latin scansion, with an\ninitial focus on the dactylic hexameters of Virgil.\n\n## License\n\nThe engine is released under an Apache 2.0 license. Please see\n[LICENSE.txt](LICENSE.txt) for details.\n\n## Installation\n\n[Conda](http://conda.io) is recommended for a reproducible environment. Assuming\nthat Conda (either Miniconda or Anaconda) is available, the following command\ncreates the environment `scansion`.\n\n    conda env create -f environment.yml\n\nThis only needs to be done once. The following command then activates the\nenvironment.\n\n    conda activate scansion\n\nThis second step needs to be repeated each time you start a new shell.\n\n## Installation\n\n1.  Compile the grammar assets:\n\n        make -j -C grammars\n\n2.  Generate the textproto library:\n\n        make -C latin_scansion\n\n3.  Install the Python library:\n\n        pip install -e .\n\n## Command-line tools\n\nInstallation produces two command-line tools:\n\n-   [`latin-scan`](latin_scansion/cli/scan.py) scans a document, generating a\n    human-readable\n    [textproto](https://medium.com/@nathantnorth/protocol-buffers-text-format-14e0584f70a5)\n    representation of document's scansion. Sample usage:\n\n        latin-scan --far grammars/all.far data/Aeneid/Aeneid01.txt data/Aeneid/Aeneid01.textproto\n\n-   [`latin-validate`](latin_scansion/cli/validate.py) validates (and\n    optionally, canonicalizes) a textproto document scansion. Sample usage:\n\n        latin-validate data/Aeneid/Aeneid01.textproto\n\n## Testing\n\nRun:\n\n    pytest tests\n\n## Authors\n\n-   [Jillian Chang](jillianchang15@gmail.com)\n-   [Kyle Gorman](kgorman@gc.cuny.edu)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Automated Latin scansion",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/CUNY-CL/latin_scansion"
    },
    "split_keywords": [
        "latin",
        " computational linguistics",
        " language",
        " natural language processing",
        " phonetics",
        " phonology",
        " speech"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b0221478fd5a19d9911bdb0e7e3f79869504faa10b894e9499071271c926c1a7",
                "md5": "0f336d1d5348bf64b5a8b9c3e6724e2c",
                "sha256": "cbf7bc3f7cd0a7868dc73c2393210dfc87106a15cba26ed9034ac82d41ef759f"
            },
            "downloads": -1,
            "filename": "latin_scansion-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0f336d1d5348bf64b5a8b9c3e6724e2c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 17340,
            "upload_time": "2024-08-22T17:51:59",
            "upload_time_iso_8601": "2024-08-22T17:51:59.285567Z",
            "url": "https://files.pythonhosted.org/packages/b0/22/1478fd5a19d9911bdb0e7e3f79869504faa10b894e9499071271c926c1a7/latin_scansion-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "889763d37e8b88f8f00eb10fa9651d03b9e56e6e46a23674bfe3bcfc75b8567d",
                "md5": "63a63241e97c41a16ad2bb11c8c39339",
                "sha256": "20daac188bdce302830771c83ee0f849dedeb541fe1fa51ebddbf64b4ffc45ea"
            },
            "downloads": -1,
            "filename": "latin_scansion-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "63a63241e97c41a16ad2bb11c8c39339",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 10658,
            "upload_time": "2024-08-22T17:52:00",
            "upload_time_iso_8601": "2024-08-22T17:52:00.584598Z",
            "url": "https://files.pythonhosted.org/packages/88/97/63d37e8b88f8f00eb10fa9651d03b9e56e6e46a23674bfe3bcfc75b8567d/latin_scansion-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-22 17:52:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "CUNY-CL",
    "github_project": "latin_scansion",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "circle": true,
    "requirements": [],
    "lcname": "latin-scansion"
}
        
Elapsed time: 0.32220s