# Lazy Predict
[Nightly Updated] Lazy Predict 2.0 to help you benchmark models without much code and understand what works better without any hyper-parameter tuning.
# Coming soon
- [ ] LLM based task benchmarking
- [ ] Text Classification
- [ ] Token Classification
- [ ] Text Summarization
- [ ] Text Similarity
- [ ] Stats model benchmarking
# Getting started
To install Lazy Predict Nightly:
pip install lazypredict-nightly
To use Lazy Predict in a project:
import lazypredict
## Classification
```
from lazypredict import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test)
print(models)
| Model | Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken |
|:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
| LinearSVC | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0150008 |
| SGDClassifier | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0109992 |
| MLPClassifier | 0.985965 | 0.986904 | 0.986904 | 0.985994 | 0.426 |
| Perceptron | 0.985965 | 0.984797 | 0.984797 | 0.985965 | 0.0120046 |
| LogisticRegression | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.0200036 |
| LogisticRegressionCV | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.262997 |
| SVC | 0.982456 | 0.979942 | 0.979942 | 0.982437 | 0.0140011 |
| CalibratedClassifierCV | 0.982456 | 0.975728 | 0.975728 | 0.982357 | 0.0350015 |
| PassiveAggressiveClassifier | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0130005 |
| LabelPropagation | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0429988 |
| LabelSpreading | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0310006 |
| RandomForestClassifier | 0.97193 | 0.969594 | 0.969594 | 0.97193 | 0.033 |
| GradientBoostingClassifier | 0.97193 | 0.967486 | 0.967486 | 0.971869 | 0.166998 |
| QuadraticDiscriminantAnalysis | 0.964912 | 0.966206 | 0.966206 | 0.965052 | 0.0119994 |
| HistGradientBoostingClassifier | 0.968421 | 0.964739 | 0.964739 | 0.968387 | 0.682003 |
| RidgeClassifierCV | 0.97193 | 0.963272 | 0.963272 | 0.971736 | 0.0130029 |
| RidgeClassifier | 0.968421 | 0.960525 | 0.960525 | 0.968242 | 0.0119977 |
| AdaBoostClassifier | 0.961404 | 0.959245 | 0.959245 | 0.961444 | 0.204998 |
| ExtraTreesClassifier | 0.961404 | 0.957138 | 0.957138 | 0.961362 | 0.0270066 |
| KNeighborsClassifier | 0.961404 | 0.95503 | 0.95503 | 0.961276 | 0.0560005 |
| BaggingClassifier | 0.947368 | 0.954577 | 0.954577 | 0.947882 | 0.0559971 |
| BernoulliNB | 0.950877 | 0.951003 | 0.951003 | 0.951072 | 0.0169988 |
| LinearDiscriminantAnalysis | 0.961404 | 0.950816 | 0.950816 | 0.961089 | 0.0199995 |
| GaussianNB | 0.954386 | 0.949536 | 0.949536 | 0.954337 | 0.0139935 |
| NuSVC | 0.954386 | 0.943215 | 0.943215 | 0.954014 | 0.019989 |
| DecisionTreeClassifier | 0.936842 | 0.933693 | 0.933693 | 0.936971 | 0.0170023 |
| NearestCentroid | 0.947368 | 0.933506 | 0.933506 | 0.946801 | 0.0160074 |
| ExtraTreeClassifier | 0.922807 | 0.912168 | 0.912168 | 0.922462 | 0.0109999 |
| CheckingClassifier | 0.361404 | 0.5 | 0.5 | 0.191879 | 0.0170043 |
| DummyClassifier | 0.512281 | 0.489598 | 0.489598 | 0.518924 | 0.0119965 |
```
## Regression
```
from lazypredict import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
print(models)
| Model | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
|:------------------------------|-------------------:|----------:|------:|-----------:|
| SVR | 0.83 | 0.88 | 2.62 | 0.01 |
| BaggingRegressor | 0.83 | 0.88 | 2.63 | 0.03 |
| NuSVR | 0.82 | 0.86 | 2.76 | 0.03 |
| RandomForestRegressor | 0.81 | 0.86 | 2.78 | 0.21 |
| XGBRegressor | 0.81 | 0.86 | 2.79 | 0.06 |
| GradientBoostingRegressor | 0.81 | 0.86 | 2.84 | 0.11 |
| ExtraTreesRegressor | 0.79 | 0.84 | 2.98 | 0.12 |
| AdaBoostRegressor | 0.78 | 0.83 | 3.04 | 0.07 |
| HistGradientBoostingRegressor | 0.77 | 0.83 | 3.06 | 0.17 |
| PoissonRegressor | 0.77 | 0.83 | 3.11 | 0.01 |
| LGBMRegressor | 0.77 | 0.83 | 3.11 | 0.07 |
| KNeighborsRegressor | 0.77 | 0.83 | 3.12 | 0.01 |
| DecisionTreeRegressor | 0.65 | 0.74 | 3.79 | 0.01 |
| MLPRegressor | 0.65 | 0.74 | 3.80 | 1.63 |
| HuberRegressor | 0.64 | 0.74 | 3.84 | 0.01 |
| GammaRegressor | 0.64 | 0.73 | 3.88 | 0.01 |
| LinearSVR | 0.62 | 0.72 | 3.96 | 0.01 |
| RidgeCV | 0.62 | 0.72 | 3.97 | 0.01 |
| BayesianRidge | 0.62 | 0.72 | 3.97 | 0.01 |
| Ridge | 0.62 | 0.72 | 3.97 | 0.01 |
| TransformedTargetRegressor | 0.62 | 0.72 | 3.97 | 0.01 |
| LinearRegression | 0.62 | 0.72 | 3.97 | 0.01 |
| ElasticNetCV | 0.62 | 0.72 | 3.98 | 0.04 |
| LassoCV | 0.62 | 0.72 | 3.98 | 0.06 |
| LassoLarsIC | 0.62 | 0.72 | 3.98 | 0.01 |
| LassoLarsCV | 0.62 | 0.72 | 3.98 | 0.02 |
| Lars | 0.61 | 0.72 | 3.99 | 0.01 |
| LarsCV | 0.61 | 0.71 | 4.02 | 0.04 |
| SGDRegressor | 0.60 | 0.70 | 4.07 | 0.01 |
| TweedieRegressor | 0.59 | 0.70 | 4.12 | 0.01 |
| GeneralizedLinearRegressor | 0.59 | 0.70 | 4.12 | 0.01 |
| ElasticNet | 0.58 | 0.69 | 4.16 | 0.01 |
| Lasso | 0.54 | 0.66 | 4.35 | 0.02 |
| RANSACRegressor | 0.53 | 0.65 | 4.41 | 0.04 |
| OrthogonalMatchingPursuitCV | 0.45 | 0.59 | 4.78 | 0.02 |
| PassiveAggressiveRegressor | 0.37 | 0.54 | 5.09 | 0.01 |
| GaussianProcessRegressor | 0.23 | 0.43 | 5.65 | 0.03 |
| OrthogonalMatchingPursuit | 0.16 | 0.38 | 5.89 | 0.01 |
| ExtraTreeRegressor | 0.08 | 0.32 | 6.17 | 0.01 |
| DummyRegressor | -0.38 | -0.02 | 7.56 | 0.01 |
| LassoLars | -0.38 | -0.02 | 7.56 | 0.01 |
| KernelRidge | -11.50 | -8.25 | 22.74 | 0.01 |
```
---
History
---
# 0.3.2 (2024-03-25)
- Major import bug fix
- Cleanup
# 0.3.1 (2024-03-03)
- Minor cleanups
# 0.3.0 (2024-03-03)
- Fixed OneHotEncoder Bug
# 0.2.11 (2022-02-06)
- Updated the default version to 3.9
# 0.2.10 (2022-02-06)
- Fixed issue with older version of Scikit-learn
- Reduced dependencies sctrictly to few
# 0.2.8 (2021-02-06)
- Removed StackingRegressor and CheckingClassifier.
- Added provided_models method.
- Added adjusted r-squared metric.
- Added cardinality check to split categorical columns into low and
high cardinality features.
- Added different transformation pipeline for low and high cardinality
features.
- Included all number dtypes as inputs.
- Fixed dependencies.
- Improved documentation.
# 0.2.7 (2020-07-09)
- Removed catboost regressor and classifier
# 0.2.6 (2020-01-22)
- Added xgboost, lightgbm, catboost regressors and classifiers
# 0.2.5 (2020-01-20)
- Removed troublesome regressors from list of CLASSIFIERS
# 0.2.4 (2020-01-19)
- Removed troublesome regressors from list of REGRESSORS
- Added feature to input custom metric for evaluation
- Added feature to return predictions as dataframe
- Added model training time for each model
# 0.2.3 (2019-11-22)
- Removed TheilSenRegressor from list of REGRESSORS
- Removed GaussianProcessClassifier from list of CLASSIFIERS
# 0.2.2 (2019-11-18)
- Fixed automatic deployment issue.
# 0.2.1 (2019-11-18)
- Release of Regression feature.
# 0.2.0 (2019-11-17)
- Release of Classification feature.
# 0.1.0 (2019-11-16)
- First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/nityansuman/lazypredict-nightly",
"name": "lazypredict-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "lazypredict, lazypredict-nightly",
"author": "Kumar Nityan Suman",
"author_email": "nityan.suman@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/05/fa/10de6d6306294880c5e4b15286bf4447f0069c0d19938edd4af610cba6aa/lazypredict-nightly-0.3.2.tar.gz",
"platform": null,
"description": "# Lazy Predict\n\n[Nightly Updated] Lazy Predict 2.0 to help you benchmark models without much code and understand what works better without any hyper-parameter tuning.\n\n# Coming soon\n\n- [ ] LLM based task benchmarking\n - [ ] Text Classification\n - [ ] Token Classification\n - [ ] Text Summarization\n - [ ] Text Similarity\n- [ ] Stats model benchmarking\n\n# Getting started\n\nTo install Lazy Predict Nightly:\n\n pip install lazypredict-nightly\n\nTo use Lazy Predict in a project:\n\n import lazypredict\n\n## Classification\n\n```\n from lazypredict import LazyClassifier\n\n from sklearn.datasets import load_breast_cancer\n from sklearn.model_selection import train_test_split\n\n data = load_breast_cancer()\n X = data.data\n y= data.target\n\n X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)\n\n clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)\n models,predictions = clf.fit(X_train, X_test, y_train, y_test)\n\n print(models)\n\n\n | Model | Accuracy | Balanced Accuracy | ROC AUC | F1 Score | Time Taken |\n |:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|\n | LinearSVC | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0150008 |\n | SGDClassifier | 0.989474 | 0.987544 | 0.987544 | 0.989462 | 0.0109992 |\n | MLPClassifier | 0.985965 | 0.986904 | 0.986904 | 0.985994 | 0.426 |\n | Perceptron | 0.985965 | 0.984797 | 0.984797 | 0.985965 | 0.0120046 |\n | LogisticRegression | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.0200036 |\n | LogisticRegressionCV | 0.985965 | 0.98269 | 0.98269 | 0.985934 | 0.262997 |\n | SVC | 0.982456 | 0.979942 | 0.979942 | 0.982437 | 0.0140011 |\n | CalibratedClassifierCV | 0.982456 | 0.975728 | 0.975728 | 0.982357 | 0.0350015 |\n | PassiveAggressiveClassifier | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0130005 |\n | LabelPropagation | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0429988 |\n | LabelSpreading | 0.975439 | 0.974448 | 0.974448 | 0.975464 | 0.0310006 |\n | RandomForestClassifier | 0.97193 | 0.969594 | 0.969594 | 0.97193 | 0.033 |\n | GradientBoostingClassifier | 0.97193 | 0.967486 | 0.967486 | 0.971869 | 0.166998 |\n | QuadraticDiscriminantAnalysis | 0.964912 | 0.966206 | 0.966206 | 0.965052 | 0.0119994 |\n | HistGradientBoostingClassifier | 0.968421 | 0.964739 | 0.964739 | 0.968387 | 0.682003 |\n | RidgeClassifierCV | 0.97193 | 0.963272 | 0.963272 | 0.971736 | 0.0130029 |\n | RidgeClassifier | 0.968421 | 0.960525 | 0.960525 | 0.968242 | 0.0119977 |\n | AdaBoostClassifier | 0.961404 | 0.959245 | 0.959245 | 0.961444 | 0.204998 |\n | ExtraTreesClassifier | 0.961404 | 0.957138 | 0.957138 | 0.961362 | 0.0270066 |\n | KNeighborsClassifier | 0.961404 | 0.95503 | 0.95503 | 0.961276 | 0.0560005 |\n | BaggingClassifier | 0.947368 | 0.954577 | 0.954577 | 0.947882 | 0.0559971 |\n | BernoulliNB | 0.950877 | 0.951003 | 0.951003 | 0.951072 | 0.0169988 |\n | LinearDiscriminantAnalysis | 0.961404 | 0.950816 | 0.950816 | 0.961089 | 0.0199995 |\n | GaussianNB | 0.954386 | 0.949536 | 0.949536 | 0.954337 | 0.0139935 |\n | NuSVC | 0.954386 | 0.943215 | 0.943215 | 0.954014 | 0.019989 |\n | DecisionTreeClassifier | 0.936842 | 0.933693 | 0.933693 | 0.936971 | 0.0170023 |\n | NearestCentroid | 0.947368 | 0.933506 | 0.933506 | 0.946801 | 0.0160074 |\n | ExtraTreeClassifier | 0.922807 | 0.912168 | 0.912168 | 0.922462 | 0.0109999 |\n | CheckingClassifier | 0.361404 | 0.5 | 0.5 | 0.191879 | 0.0170043 |\n | DummyClassifier | 0.512281 | 0.489598 | 0.489598 | 0.518924 | 0.0119965 |\n```\n\n## Regression\n\n```\n from lazypredict import LazyRegressor\n\n from sklearn import datasets\n from sklearn.utils import shuffle\n import numpy as np\n\n boston = datasets.load_boston()\n X, y = shuffle(boston.data, boston.target, random_state=13)\n X = X.astype(np.float32)\n\n offset = int(X.shape[0] * 0.9)\n\n X_train, y_train = X[:offset], y[:offset]\n X_test, y_test = X[offset:], y[offset:]\n\n reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)\n models, predictions = reg.fit(X_train, X_test, y_train, y_test)\n\n print(models)\n\n\n | Model | Adjusted R-Squared | R-Squared | RMSE | Time Taken |\n |:------------------------------|-------------------:|----------:|------:|-----------:|\n | SVR | 0.83 | 0.88 | 2.62 | 0.01 |\n | BaggingRegressor | 0.83 | 0.88 | 2.63 | 0.03 |\n | NuSVR | 0.82 | 0.86 | 2.76 | 0.03 |\n | RandomForestRegressor | 0.81 | 0.86 | 2.78 | 0.21 |\n | XGBRegressor | 0.81 | 0.86 | 2.79 | 0.06 |\n | GradientBoostingRegressor | 0.81 | 0.86 | 2.84 | 0.11 |\n | ExtraTreesRegressor | 0.79 | 0.84 | 2.98 | 0.12 |\n | AdaBoostRegressor | 0.78 | 0.83 | 3.04 | 0.07 |\n | HistGradientBoostingRegressor | 0.77 | 0.83 | 3.06 | 0.17 |\n | PoissonRegressor | 0.77 | 0.83 | 3.11 | 0.01 |\n | LGBMRegressor | 0.77 | 0.83 | 3.11 | 0.07 |\n | KNeighborsRegressor | 0.77 | 0.83 | 3.12 | 0.01 |\n | DecisionTreeRegressor | 0.65 | 0.74 | 3.79 | 0.01 |\n | MLPRegressor | 0.65 | 0.74 | 3.80 | 1.63 |\n | HuberRegressor | 0.64 | 0.74 | 3.84 | 0.01 |\n | GammaRegressor | 0.64 | 0.73 | 3.88 | 0.01 |\n | LinearSVR | 0.62 | 0.72 | 3.96 | 0.01 |\n | RidgeCV | 0.62 | 0.72 | 3.97 | 0.01 |\n | BayesianRidge | 0.62 | 0.72 | 3.97 | 0.01 |\n | Ridge | 0.62 | 0.72 | 3.97 | 0.01 |\n | TransformedTargetRegressor | 0.62 | 0.72 | 3.97 | 0.01 |\n | LinearRegression | 0.62 | 0.72 | 3.97 | 0.01 |\n | ElasticNetCV | 0.62 | 0.72 | 3.98 | 0.04 |\n | LassoCV | 0.62 | 0.72 | 3.98 | 0.06 |\n | LassoLarsIC | 0.62 | 0.72 | 3.98 | 0.01 |\n | LassoLarsCV | 0.62 | 0.72 | 3.98 | 0.02 |\n | Lars | 0.61 | 0.72 | 3.99 | 0.01 |\n | LarsCV | 0.61 | 0.71 | 4.02 | 0.04 |\n | SGDRegressor | 0.60 | 0.70 | 4.07 | 0.01 |\n | TweedieRegressor | 0.59 | 0.70 | 4.12 | 0.01 |\n | GeneralizedLinearRegressor | 0.59 | 0.70 | 4.12 | 0.01 |\n | ElasticNet | 0.58 | 0.69 | 4.16 | 0.01 |\n | Lasso | 0.54 | 0.66 | 4.35 | 0.02 |\n | RANSACRegressor | 0.53 | 0.65 | 4.41 | 0.04 |\n | OrthogonalMatchingPursuitCV | 0.45 | 0.59 | 4.78 | 0.02 |\n | PassiveAggressiveRegressor | 0.37 | 0.54 | 5.09 | 0.01 |\n | GaussianProcessRegressor | 0.23 | 0.43 | 5.65 | 0.03 |\n | OrthogonalMatchingPursuit | 0.16 | 0.38 | 5.89 | 0.01 |\n | ExtraTreeRegressor | 0.08 | 0.32 | 6.17 | 0.01 |\n | DummyRegressor | -0.38 | -0.02 | 7.56 | 0.01 |\n | LassoLars | -0.38 | -0.02 | 7.56 | 0.01 |\n | KernelRidge | -11.50 | -8.25 | 22.74 | 0.01 |\n```\n\n\n---\nHistory\n---\n\n# 0.3.2 (2024-03-25)\n\n- Major import bug fix\n- Cleanup\n\n# 0.3.1 (2024-03-03)\n\n- Minor cleanups\n\n# 0.3.0 (2024-03-03)\n\n- Fixed OneHotEncoder Bug\n\n# 0.2.11 (2022-02-06)\n\n- Updated the default version to 3.9\n\n# 0.2.10 (2022-02-06)\n\n- Fixed issue with older version of Scikit-learn\n- Reduced dependencies sctrictly to few\n\n# 0.2.8 (2021-02-06)\n\n- Removed StackingRegressor and CheckingClassifier.\n- Added provided_models method.\n- Added adjusted r-squared metric.\n- Added cardinality check to split categorical columns into low and\n high cardinality features.\n- Added different transformation pipeline for low and high cardinality\n features.\n- Included all number dtypes as inputs.\n- Fixed dependencies.\n- Improved documentation.\n\n# 0.2.7 (2020-07-09)\n\n- Removed catboost regressor and classifier\n\n# 0.2.6 (2020-01-22)\n\n- Added xgboost, lightgbm, catboost regressors and classifiers\n\n# 0.2.5 (2020-01-20)\n\n- Removed troublesome regressors from list of CLASSIFIERS\n\n# 0.2.4 (2020-01-19)\n\n- Removed troublesome regressors from list of REGRESSORS\n- Added feature to input custom metric for evaluation\n- Added feature to return predictions as dataframe\n- Added model training time for each model\n\n# 0.2.3 (2019-11-22)\n\n- Removed TheilSenRegressor from list of REGRESSORS\n- Removed GaussianProcessClassifier from list of CLASSIFIERS\n\n# 0.2.2 (2019-11-18)\n\n- Fixed automatic deployment issue.\n\n# 0.2.1 (2019-11-18)\n\n- Release of Regression feature.\n\n# 0.2.0 (2019-11-17)\n\n- Release of Classification feature.\n\n# 0.1.0 (2019-11-16)\n\n- First release on PyPI.\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "[Updated] Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning",
"version": "0.3.2",
"project_urls": {
"Homepage": "https://github.com/nityansuman/lazypredict-nightly"
},
"split_keywords": [
"lazypredict",
" lazypredict-nightly"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "891f117b789c48222d04fbcfeb74c58de20c61e6ec75ea67ea03f9357eb2ddb6",
"md5": "c6ed269f998cccaa0040dedcfa618b23",
"sha256": "63787a22d7afca40a0bf2611a15d9946fb56df246816670e2a62341da469b741"
},
"downloads": -1,
"filename": "lazypredict_nightly-0.3.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "c6ed269f998cccaa0040dedcfa618b23",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 11600,
"upload_time": "2024-03-25T08:35:40",
"upload_time_iso_8601": "2024-03-25T08:35:40.904493Z",
"url": "https://files.pythonhosted.org/packages/89/1f/117b789c48222d04fbcfeb74c58de20c61e6ec75ea67ea03f9357eb2ddb6/lazypredict_nightly-0.3.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "05fa10de6d6306294880c5e4b15286bf4447f0069c0d19938edd4af610cba6aa",
"md5": "1a7413bf4b96302bdd552b2db9cf5d94",
"sha256": "9ab5c2d3cea52c18eae45b9612847c880257f6f415a8fdf65e91e32518c9d74e"
},
"downloads": -1,
"filename": "lazypredict-nightly-0.3.2.tar.gz",
"has_sig": false,
"md5_digest": "1a7413bf4b96302bdd552b2db9cf5d94",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 13045,
"upload_time": "2024-03-25T08:35:42",
"upload_time_iso_8601": "2024-03-25T08:35:42.451633Z",
"url": "https://files.pythonhosted.org/packages/05/fa/10de6d6306294880c5e4b15286bf4447f0069c0d19938edd4af610cba6aa/lazypredict-nightly-0.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-25 08:35:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nityansuman",
"github_project": "lazypredict-nightly",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "lazypredict-nightly"
}