lazyqml


Namelazyqml JSON
Version 3.1.1 PyPI version JSON
download
home_pageNone
SummaryLazyQML benchmarking utility to test quantum machine learning models.
upload_time2024-12-17 12:11:40
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT License
keywords lazyqml
VCS
bugtrack_url
requirements wheel tabulate torch torchaudio torchvision scipy scikit-learn PennyLane PennyLane_Lightning PennyLane_Lightning_GPU custatevec_cu12 ucimlrepo pydantic psutil pandas joblib gputil
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)
---
[![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)
![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white) 
![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)



LazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.

With LazyQML, you can:
  - 🛠️ Build, test, and benchmark QML models with minimal effort.
  
  - ⚡ Compare different QML architectures, hyperparameters seamlessly.
  
  - 🧠 Gather knowledge about the most suitable architecture for your problem.

## ✨ Why LazyQML?

- Rapid Prototyping: Experiment with different QML models using just a few lines of code.

- Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.

- Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models—LazyQML has you covered.

## Documentation
For detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.

## Requirements

- Python >= 3.10

> [!CAUTION]
> This library is only supported by Linux Systems. It doesn't support Windows nor MacOS. 


## Installation
To install lazyqml, run this command in your terminal:

```
pip install lazyqml
```

This is the preferred method to install lazyqml, as it will always install the most recent stable release.

If you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.

### From sources

To install lazyqml from sources, run this command in your terminal:

```
pip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML
```
## Example

```python 
from sklearn.datasets import load_iris
from lazyqml.lazyqml import *

# Load data
data = load_iris()
X = data.data
y = data.target

classifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)

# Fit and predict
classifier.fit(X=X, y=y, test_size=0.4)
```

## Quantum and High Performance Computing (QHPC) - University of Oviedo    
- José Ranilla Pastor - ranilla@uniovi.es
- Elías Fernández Combarro - efernandezca@uniovi.es
- Diego García Vega - diegogarciavega@gmail.com
- Fernando Álvaro Plou Llorente - ploufernando@uniovi.es
- Alejandro Leal Castaño - lealcalejandro@uniovi.es
- Group - https://qhpc.uniovi.es

## Citing
If you used LazyQML in your work, please cite:
- García-Vega, D., Plou Llorente, F., Leal Castaño, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)

## License
- Free software: MIT License


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "lazyqml",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "lazyqml",
    "author": null,
    "author_email": "QHPC Group <qhpcgroup@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e9/2c/df35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce/lazyqml-3.1.1.tar.gz",
    "platform": null,
    "description": "![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)\n---\n[![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)\n![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white) \n![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)\n![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)\n![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)\n![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)\n![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)\n![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)\n\n\n\nLazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.\n\nWith LazyQML, you can:\n  - \ud83d\udee0\ufe0f Build, test, and benchmark QML models with minimal effort.\n  \n  - \u26a1 Compare different QML architectures, hyperparameters seamlessly.\n  \n  - \ud83e\udde0 Gather knowledge about the most suitable architecture for your problem.\n\n## \u2728 Why LazyQML?\n\n- Rapid Prototyping: Experiment with different QML models using just a few lines of code.\n\n- Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.\n\n- Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models\u2014LazyQML has you covered.\n\n## Documentation\nFor detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.\n\n## Requirements\n\n- Python >= 3.10\n\n> [!CAUTION]\n> This library is only supported by Linux Systems. It doesn't support Windows nor MacOS. \n\n\n## Installation\nTo install lazyqml, run this command in your terminal:\n\n```\npip install lazyqml\n```\n\nThis is the preferred method to install lazyqml, as it will always install the most recent stable release.\n\nIf you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.\n\n### From sources\n\nTo install lazyqml from sources, run this command in your terminal:\n\n```\npip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML\n```\n## Example\n\n```python \nfrom sklearn.datasets import load_iris\nfrom lazyqml.lazyqml import *\n\n# Load data\ndata = load_iris()\nX = data.data\ny = data.target\n\nclassifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)\n\n# Fit and predict\nclassifier.fit(X=X, y=y, test_size=0.4)\n```\n\n## Quantum and High Performance Computing (QHPC) - University of Oviedo    \n- Jos\u00e9 Ranilla Pastor - ranilla@uniovi.es\n- El\u00edas Fern\u00e1ndez Combarro - efernandezca@uniovi.es\n- Diego Garc\u00eda Vega - diegogarciavega@gmail.com\n- Fernando \u00c1lvaro Plou Llorente - ploufernando@uniovi.es\n- Alejandro Leal Casta\u00f1o - lealcalejandro@uniovi.es\n- Group - https://qhpc.uniovi.es\n\n## Citing\nIf you used LazyQML in your work, please cite:\n- Garc\u00eda-Vega, D., Plou Llorente, F., Leal Casta\u00f1o, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)\n\n## License\n- Free software: MIT License\n\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "LazyQML benchmarking utility to test quantum machine learning models.",
    "version": "3.1.1",
    "project_urls": {
        "Homepage": "https://github.com/QHPC-SP-Research-Lab/LazyQML"
    },
    "split_keywords": [
        "lazyqml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8a2b82c4cba18efe6714953ad882b1a9d979a30164bc842ef908b5a0b98a8854",
                "md5": "577ed6775882fb1ea5f4565d7369ced3",
                "sha256": "1afe487fe66c3b1c23da5920727b93553da1deea36dc3ece766c3ab6c89b220d"
            },
            "downloads": -1,
            "filename": "lazyqml-3.1.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "577ed6775882fb1ea5f4565d7369ced3",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.9",
            "size": 39490,
            "upload_time": "2024-12-17T12:11:38",
            "upload_time_iso_8601": "2024-12-17T12:11:38.425302Z",
            "url": "https://files.pythonhosted.org/packages/8a/2b/82c4cba18efe6714953ad882b1a9d979a30164bc842ef908b5a0b98a8854/lazyqml-3.1.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e92cdf35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce",
                "md5": "76901586b1d60f0485e53485a8f03e0f",
                "sha256": "f1102716681c57ae917a510a8d93f6230f2c6f3993aeb291c1592c09c3c639b8"
            },
            "downloads": -1,
            "filename": "lazyqml-3.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "76901586b1d60f0485e53485a8f03e0f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 115249,
            "upload_time": "2024-12-17T12:11:40",
            "upload_time_iso_8601": "2024-12-17T12:11:40.542465Z",
            "url": "https://files.pythonhosted.org/packages/e9/2c/df35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce/lazyqml-3.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-17 12:11:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "QHPC-SP-Research-Lab",
    "github_project": "LazyQML",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "wheel",
            "specs": []
        },
        {
            "name": "tabulate",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchaudio",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "PennyLane",
            "specs": []
        },
        {
            "name": "PennyLane_Lightning",
            "specs": []
        },
        {
            "name": "PennyLane_Lightning_GPU",
            "specs": []
        },
        {
            "name": "custatevec_cu12",
            "specs": []
        },
        {
            "name": "ucimlrepo",
            "specs": []
        },
        {
            "name": "pydantic",
            "specs": []
        },
        {
            "name": "psutil",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "joblib",
            "specs": []
        },
        {
            "name": "gputil",
            "specs": []
        }
    ],
    "lcname": "lazyqml"
}
        
Elapsed time: 0.42226s