![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)
---
[![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)
![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white)
![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
LazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.
With LazyQML, you can:
- 🛠️ Build, test, and benchmark QML models with minimal effort.
- ⚡ Compare different QML architectures, hyperparameters seamlessly.
- 🧠 Gather knowledge about the most suitable architecture for your problem.
## ✨ Why LazyQML?
- Rapid Prototyping: Experiment with different QML models using just a few lines of code.
- Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.
- Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models—LazyQML has you covered.
## Documentation
For detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.
## Requirements
- Python >= 3.10
> [!CAUTION]
> This library is only supported by Linux Systems. It doesn't support Windows nor MacOS.
## Installation
To install lazyqml, run this command in your terminal:
```
pip install lazyqml
```
This is the preferred method to install lazyqml, as it will always install the most recent stable release.
If you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.
### From sources
To install lazyqml from sources, run this command in your terminal:
```
pip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML
```
## Example
```python
from sklearn.datasets import load_iris
from lazyqml.lazyqml import *
# Load data
data = load_iris()
X = data.data
y = data.target
classifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)
# Fit and predict
classifier.fit(X=X, y=y, test_size=0.4)
```
## Quantum and High Performance Computing (QHPC) - University of Oviedo
- José Ranilla Pastor - ranilla@uniovi.es
- Elías Fernández Combarro - efernandezca@uniovi.es
- Diego García Vega - diegogarciavega@gmail.com
- Fernando Álvaro Plou Llorente - ploufernando@uniovi.es
- Alejandro Leal Castaño - lealcalejandro@uniovi.es
- Group - https://qhpc.uniovi.es
## Citing
If you used LazyQML in your work, please cite:
- García-Vega, D., Plou Llorente, F., Leal Castaño, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)
## License
- Free software: MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "lazyqml",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "lazyqml",
"author": null,
"author_email": "QHPC Group <qhpcgroup@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/e9/2c/df35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce/lazyqml-3.1.1.tar.gz",
"platform": null,
"description": "![logo](https://github.com/QHPC-SP-Research-Lab/LazyQML/blob/main/docs/logo.jpg)\n---\n[![Pypi](https://img.shields.io/badge/pypi-%23ececec.svg?style=for-the-badge&logo=pypi&logoColor=1f73b7)](https://pypi.python.org/pypi/lazyqml)\n![GitHub Actions](https://img.shields.io/badge/github%20actions-%232671E5.svg?style=for-the-badge&logo=githubactions&logoColor=white) \n![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)\n![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)\n![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)\n![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)\n![nVIDIA](https://img.shields.io/badge/cuda-000000.svg?style=for-the-badge&logo=nVIDIA&logoColor=green)\n![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)\n\n\n\nLazyQML is a Python library designed to streamline, automate, and accelerate experimentation with Quantum Machine Learning (QML) architectures, right on classical computers.\n\nWith LazyQML, you can:\n - \ud83d\udee0\ufe0f Build, test, and benchmark QML models with minimal effort.\n \n - \u26a1 Compare different QML architectures, hyperparameters seamlessly.\n \n - \ud83e\udde0 Gather knowledge about the most suitable architecture for your problem.\n\n## \u2728 Why LazyQML?\n\n- Rapid Prototyping: Experiment with different QML models using just a few lines of code.\n\n- Automated Benchmarking: Evaluate performance and trade-offs across architectures effortlessly.\n\n- Flexible & Modular: From basic quantum circuits to hybrid quantum-classical models\u2014LazyQML has you covered.\n\n## Documentation\nFor detailed usage instructions, API reference, and code examples, please refer to the official LazyQML documentation.\n\n## Requirements\n\n- Python >= 3.10\n\n> [!CAUTION]\n> This library is only supported by Linux Systems. It doesn't support Windows nor MacOS. \n\n\n## Installation\nTo install lazyqml, run this command in your terminal:\n\n```\npip install lazyqml\n```\n\nThis is the preferred method to install lazyqml, as it will always install the most recent stable release.\n\nIf you don't have [pip](https://pip.pypa.io) installed, this [Python installation guide](http://docs.python-guide.org/en/latest/starting/installation/) can guide you through the process.\n\n### From sources\n\nTo install lazyqml from sources, run this command in your terminal:\n\n```\npip install git+https://github.com/QHPC-SP-Research-Lab/LazyQML\n```\n## Example\n\n```python \nfrom sklearn.datasets import load_iris\nfrom lazyqml.lazyqml import *\n\n# Load data\ndata = load_iris()\nX = data.data\ny = data.target\n\nclassifier = QuantumClassifier(nqubits={4}, classifiers={Model.QNN, Model.QSVM}, epochs=10)\n\n# Fit and predict\nclassifier.fit(X=X, y=y, test_size=0.4)\n```\n\n## Quantum and High Performance Computing (QHPC) - University of Oviedo \n- Jos\u00e9 Ranilla Pastor - ranilla@uniovi.es\n- El\u00edas Fern\u00e1ndez Combarro - efernandezca@uniovi.es\n- Diego Garc\u00eda Vega - diegogarciavega@gmail.com\n- Fernando \u00c1lvaro Plou Llorente - ploufernando@uniovi.es\n- Alejandro Leal Casta\u00f1o - lealcalejandro@uniovi.es\n- Group - https://qhpc.uniovi.es\n\n## Citing\nIf you used LazyQML in your work, please cite:\n- Garc\u00eda-Vega, D., Plou Llorente, F., Leal Casta\u00f1o, A., Combarro, E.F., Ranilla, J.: Lazyqml: A python library to benchmark quantum machine learning models. In: 30th European Conference on Parallel and Distributed Processing (2024)\n\n## License\n- Free software: MIT License\n\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "LazyQML benchmarking utility to test quantum machine learning models.",
"version": "3.1.1",
"project_urls": {
"Homepage": "https://github.com/QHPC-SP-Research-Lab/LazyQML"
},
"split_keywords": [
"lazyqml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8a2b82c4cba18efe6714953ad882b1a9d979a30164bc842ef908b5a0b98a8854",
"md5": "577ed6775882fb1ea5f4565d7369ced3",
"sha256": "1afe487fe66c3b1c23da5920727b93553da1deea36dc3ece766c3ab6c89b220d"
},
"downloads": -1,
"filename": "lazyqml-3.1.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "577ed6775882fb1ea5f4565d7369ced3",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.9",
"size": 39490,
"upload_time": "2024-12-17T12:11:38",
"upload_time_iso_8601": "2024-12-17T12:11:38.425302Z",
"url": "https://files.pythonhosted.org/packages/8a/2b/82c4cba18efe6714953ad882b1a9d979a30164bc842ef908b5a0b98a8854/lazyqml-3.1.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e92cdf35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce",
"md5": "76901586b1d60f0485e53485a8f03e0f",
"sha256": "f1102716681c57ae917a510a8d93f6230f2c6f3993aeb291c1592c09c3c639b8"
},
"downloads": -1,
"filename": "lazyqml-3.1.1.tar.gz",
"has_sig": false,
"md5_digest": "76901586b1d60f0485e53485a8f03e0f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 115249,
"upload_time": "2024-12-17T12:11:40",
"upload_time_iso_8601": "2024-12-17T12:11:40.542465Z",
"url": "https://files.pythonhosted.org/packages/e9/2c/df35d42d575960dfd97400c372e32bbf4210c5eb28f4caf23644b9506fce/lazyqml-3.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 12:11:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "QHPC-SP-Research-Lab",
"github_project": "LazyQML",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "wheel",
"specs": []
},
{
"name": "tabulate",
"specs": []
},
{
"name": "torch",
"specs": []
},
{
"name": "torchaudio",
"specs": []
},
{
"name": "torchvision",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "PennyLane",
"specs": []
},
{
"name": "PennyLane_Lightning",
"specs": []
},
{
"name": "PennyLane_Lightning_GPU",
"specs": []
},
{
"name": "custatevec_cu12",
"specs": []
},
{
"name": "ucimlrepo",
"specs": []
},
{
"name": "pydantic",
"specs": []
},
{
"name": "psutil",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "joblib",
"specs": []
},
{
"name": "gputil",
"specs": []
}
],
"lcname": "lazyqml"
}