# LazySlide
<p align="center">
<picture align="center">
<img src="https://raw.githubusercontent.com/rendeirolab/lazyslide/main/assets/logo@3x.png" width="100px">
</picture>
</p>
<p align="center">
<i>Modularized and scalable whole slide image analysis</i>
</p>
[](https://lazyslide.readthedocs.io/en/stable)


LazySlide is a Python package for whole-slide image (WSI) processing.
It is designed to be fast and memory-efficient, allowing users to work
with large WSIs on modest hardware.
## Highlights
- Multimodel analysis
- Transcriptomics integration
- `scanpy`-style API
- CLI and Nextflow support
Raw data
{
"_id": null,
"home_page": null,
"name": "lazyslide",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "deep learning, histopathology, image analysis, segmentation, whole slide image",
"author": null,
"author_email": "Yimin Zheng <yzheng@cemm.at>, Ernesto Abila <eabila@cemm.at>, \"Andr\u00e9 F. Rendeiro\" <arendeiro@cemm.at>",
"download_url": "https://files.pythonhosted.org/packages/4b/78/f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b/lazyslide-0.3.0.tar.gz",
"platform": null,
"description": "# LazySlide\n\n<p align=\"center\">\n <picture align=\"center\">\n <img src=\"https://raw.githubusercontent.com/rendeirolab/lazyslide/main/assets/logo@3x.png\" width=\"100px\">\n </picture>\n</p>\n<p align=\"center\">\n <i>Modularized and scalable whole slide image analysis</i>\n</p>\n\n[](https://lazyslide.readthedocs.io/en/stable)\n\n\n\nLazySlide is a Python package for whole-slide image (WSI) processing. \nIt is designed to be fast and memory-efficient, allowing users to work \nwith large WSIs on modest hardware.\n\n## Highlights\n\n- Multimodel analysis\n- Transcriptomics integration\n- `scanpy`-style API\n- CLI and Nextflow support\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Modularized and scalable whole slide image analysis",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [
"deep learning",
" histopathology",
" image analysis",
" segmentation",
" whole slide image"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "40b76b7b579b9488fb3688606b62fc8be1703f92df66a2573ce1a24295833ef2",
"md5": "d837477f2633ae62905246150fe300de",
"sha256": "7d62006ead2611155196f4f370d17e72aae51d4f677bbac9f7e1ab64dce8b50c"
},
"downloads": -1,
"filename": "lazyslide-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d837477f2633ae62905246150fe300de",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 19070991,
"upload_time": "2025-02-10T09:14:17",
"upload_time_iso_8601": "2025-02-10T09:14:17.818417Z",
"url": "https://files.pythonhosted.org/packages/40/b7/6b7b579b9488fb3688606b62fc8be1703f92df66a2573ce1a24295833ef2/lazyslide-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4b78f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b",
"md5": "f35147ae387c7d82885b8ecf97aca7c8",
"sha256": "e4f38ccecda4765abda23bd3e38ff5f1914d36269574452523ee20e495e813a3"
},
"downloads": -1,
"filename": "lazyslide-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "f35147ae387c7d82885b8ecf97aca7c8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 19051062,
"upload_time": "2025-02-10T09:14:22",
"upload_time_iso_8601": "2025-02-10T09:14:22.342974Z",
"url": "https://files.pythonhosted.org/packages/4b/78/f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b/lazyslide-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-10 09:14:22",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "lazyslide"
}