lazyslide


Namelazyslide JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
SummaryModularized and scalable whole slide image analysis
upload_time2025-02-10 09:14:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords deep learning histopathology image analysis segmentation whole slide image
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LazySlide

<p align="center">
    <picture align="center">
    <img src="https://raw.githubusercontent.com/rendeirolab/lazyslide/main/assets/logo@3x.png" width="100px">
    </picture>
</p>
<p align="center">
  <i>Modularized and scalable whole slide image analysis</i>
</p>

[![Documentation Status](https://readthedocs.org/projects/lazyslide/badge/?version=stable&style=flat-square)](https://lazyslide.readthedocs.io/en/stable)
![pypi version](https://img.shields.io/pypi/v/lazyslide?color=0098FF&logo=python&logoColor=white&style=flat-square)
![PyPI - License](https://img.shields.io/pypi/l/lazyslide?color=FFD43B&style=flat-square)

LazySlide is a Python package for whole-slide image (WSI) processing. 
It is designed to be fast and memory-efficient, allowing users to work 
with large WSIs on modest hardware.

## Highlights

- Multimodel analysis
- Transcriptomics integration
- `scanpy`-style API
- CLI and Nextflow support


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "lazyslide",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "deep learning, histopathology, image analysis, segmentation, whole slide image",
    "author": null,
    "author_email": "Yimin Zheng <yzheng@cemm.at>, Ernesto Abila <eabila@cemm.at>, \"Andr\u00e9 F. Rendeiro\" <arendeiro@cemm.at>",
    "download_url": "https://files.pythonhosted.org/packages/4b/78/f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b/lazyslide-0.3.0.tar.gz",
    "platform": null,
    "description": "# LazySlide\n\n<p align=\"center\">\n    <picture align=\"center\">\n    <img src=\"https://raw.githubusercontent.com/rendeirolab/lazyslide/main/assets/logo@3x.png\" width=\"100px\">\n    </picture>\n</p>\n<p align=\"center\">\n  <i>Modularized and scalable whole slide image analysis</i>\n</p>\n\n[![Documentation Status](https://readthedocs.org/projects/lazyslide/badge/?version=stable&style=flat-square)](https://lazyslide.readthedocs.io/en/stable)\n![pypi version](https://img.shields.io/pypi/v/lazyslide?color=0098FF&logo=python&logoColor=white&style=flat-square)\n![PyPI - License](https://img.shields.io/pypi/l/lazyslide?color=FFD43B&style=flat-square)\n\nLazySlide is a Python package for whole-slide image (WSI) processing. \nIt is designed to be fast and memory-efficient, allowing users to work \nwith large WSIs on modest hardware.\n\n## Highlights\n\n- Multimodel analysis\n- Transcriptomics integration\n- `scanpy`-style API\n- CLI and Nextflow support\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Modularized and scalable whole slide image analysis",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "deep learning",
        " histopathology",
        " image analysis",
        " segmentation",
        " whole slide image"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "40b76b7b579b9488fb3688606b62fc8be1703f92df66a2573ce1a24295833ef2",
                "md5": "d837477f2633ae62905246150fe300de",
                "sha256": "7d62006ead2611155196f4f370d17e72aae51d4f677bbac9f7e1ab64dce8b50c"
            },
            "downloads": -1,
            "filename": "lazyslide-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d837477f2633ae62905246150fe300de",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 19070991,
            "upload_time": "2025-02-10T09:14:17",
            "upload_time_iso_8601": "2025-02-10T09:14:17.818417Z",
            "url": "https://files.pythonhosted.org/packages/40/b7/6b7b579b9488fb3688606b62fc8be1703f92df66a2573ce1a24295833ef2/lazyslide-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4b78f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b",
                "md5": "f35147ae387c7d82885b8ecf97aca7c8",
                "sha256": "e4f38ccecda4765abda23bd3e38ff5f1914d36269574452523ee20e495e813a3"
            },
            "downloads": -1,
            "filename": "lazyslide-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f35147ae387c7d82885b8ecf97aca7c8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 19051062,
            "upload_time": "2025-02-10T09:14:22",
            "upload_time_iso_8601": "2025-02-10T09:14:22.342974Z",
            "url": "https://files.pythonhosted.org/packages/4b/78/f74f76c213cced239b727898f461d4cf1668da6e60cfe543f094b0628a1b/lazyslide-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-10 09:14:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "lazyslide"
}
        
Elapsed time: 0.85721s