ldimbenchmark


Nameldimbenchmark JSON
Version 0.2.67 PyPI version JSON
download
home_page
Summary
upload_time2023-07-29 22:03:28
maintainer
docs_urlNone
authorDanielHabenicht
requires_python>=3.8,<4
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![ldimbenchmark version](https://badgen.net/pypi/v/ldimbenchmark/)](https://pypi.org/project/ldimbenchmark)
[![Documentation badge](https://img.shields.io/badge/Documentation-here!-GREEN.svg)](https://tumt2022.github.io/LDIMBench/)

# LDIMBenchmark

Leakage Detection and Isolation Methods Benchmark

> Instead of collecting all the different dataset to benchmark different methods on. We wanted to create a Benchmarking Tool which makes it easy to reproduce the results of the different methods locally on your own dataset.

It provides a close to real-world conditions environment and forces researchers to provide a reproducible method implementation, which is supposed to run automated on any input dataset, thus hindering custom solutions which work well in one specific case.

## Usage

### Installation

```bash
pip install ldimbenchmark
```

### Python

```python
from ldimbenchmark.datasets import DatasetLibrary, DATASETS
from ldimbenchmark import (
    LDIMBenchmark,
    BenchmarkData,
    BenchmarkLeakageResult,
)
from ldimbenchmark.classes import LDIMMethodBase
from typing import List

class YourCustomLDIMMethod(LDIMMethodBase):
    def __init__(self):
        super().__init__(
            name="YourCustomLDIMMethod",
            version="0.1.0"
        )

    def train(self, data: BenchmarkData):
        pass

    def detect(self, data: BenchmarkData) -> List[BenchmarkLeakageResult]:
        return [
            {
                "leak_start": "2020-01-01",
                "leak_end": "2020-01-02",
                "leak_area": 0.2,
                "pipe_id": "test",
            }
        ]

    def detect_datapoint(self, evaluation_data) -> BenchmarkLeakageResult:
        return {}


datasets = DatasetLibrary("datasets").download(DATASETS.BATTLEDIM)

local_methods = [YourCustomLDIMMethod()]

hyperparameters = {}

benchmark = LDIMBenchmark(
    hyperparameters, datasets, results_dir="./benchmark-results"
)
benchmark.add_local_methods(local_methods)

benchmark.run_benchmark()

benchmark.evaluate()
```

### CLI

```bash
ldimbenchmark --help
```

## Roadmap

- v1: Just Leakage Detection
- v2: Provides Benchmark of Isolation Methods

https://mathspp.com/blog/how-to-create-a-python-package-in-2022

## Development

https://python-poetry.org/docs/basic-usage/

```bash
# python 3.10
# Use Environment
poetry config virtualenvs.in-project true
poetry shell
poetry install --without ci # --with ci


# Test
poetry build
cp -r dist tests/dist
cd tests
docker build . -t testmethod
pytest -s -o log_cli=true
pytest tests/test_derivation.py -k 'test_mything'
pytest --testmon
pytest --snapshot-update

# Pytest watch
ptw
ptw -- --testmon

# Watch a file during development
npm install -g nodemon
nodemon -L experiments/auto_hyperparameter.py

# Test-Publish
poetry config repositories.testpypi https://test.pypi.org/legacy/
poetry config http-basic.testpypi __token__ pypi-your-api-token-here
poetry build
poetry publish -r testpypi

# Real Publish
poetry config pypi-token.pypi pypi-your-token-here
```

### Documentation

https://squidfunk.github.io/mkdocs-material/
https://click.palletsprojects.com/en/8.1.x/

```
poetry shell
mkdocs serve
```

# TODO

LDIMBenchmark:
Data Cleansing before working with them

- per sensor type, e.g. waterflow (cut of at 0)
- removing datapoints which are clearly a malfunction


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "ldimbenchmark",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4",
    "maintainer_email": "",
    "keywords": "",
    "author": "DanielHabenicht",
    "author_email": "daniel-habenicht@outlook.de",
    "download_url": "https://files.pythonhosted.org/packages/34/90/6623ad082b92048f043026e9ce592a33637678e864bb3cb0b717f7ceb122/ldimbenchmark-0.2.67.tar.gz",
    "platform": null,
    "description": "[![ldimbenchmark version](https://badgen.net/pypi/v/ldimbenchmark/)](https://pypi.org/project/ldimbenchmark)\n[![Documentation badge](https://img.shields.io/badge/Documentation-here!-GREEN.svg)](https://tumt2022.github.io/LDIMBench/)\n\n# LDIMBenchmark\n\nLeakage Detection and Isolation Methods Benchmark\n\n> Instead of collecting all the different dataset to benchmark different methods on. We wanted to create a Benchmarking Tool which makes it easy to reproduce the results of the different methods locally on your own dataset.\n\nIt provides a close to real-world conditions environment and forces researchers to provide a reproducible method implementation, which is supposed to run automated on any input dataset, thus hindering custom solutions which work well in one specific case.\n\n## Usage\n\n### Installation\n\n```bash\npip install ldimbenchmark\n```\n\n### Python\n\n```python\nfrom ldimbenchmark.datasets import DatasetLibrary, DATASETS\nfrom ldimbenchmark import (\n    LDIMBenchmark,\n    BenchmarkData,\n    BenchmarkLeakageResult,\n)\nfrom ldimbenchmark.classes import LDIMMethodBase\nfrom typing import List\n\nclass YourCustomLDIMMethod(LDIMMethodBase):\n    def __init__(self):\n        super().__init__(\n            name=\"YourCustomLDIMMethod\",\n            version=\"0.1.0\"\n        )\n\n    def train(self, data: BenchmarkData):\n        pass\n\n    def detect(self, data: BenchmarkData) -> List[BenchmarkLeakageResult]:\n        return [\n            {\n                \"leak_start\": \"2020-01-01\",\n                \"leak_end\": \"2020-01-02\",\n                \"leak_area\": 0.2,\n                \"pipe_id\": \"test\",\n            }\n        ]\n\n    def detect_datapoint(self, evaluation_data) -> BenchmarkLeakageResult:\n        return {}\n\n\ndatasets = DatasetLibrary(\"datasets\").download(DATASETS.BATTLEDIM)\n\nlocal_methods = [YourCustomLDIMMethod()]\n\nhyperparameters = {}\n\nbenchmark = LDIMBenchmark(\n    hyperparameters, datasets, results_dir=\"./benchmark-results\"\n)\nbenchmark.add_local_methods(local_methods)\n\nbenchmark.run_benchmark()\n\nbenchmark.evaluate()\n```\n\n### CLI\n\n```bash\nldimbenchmark --help\n```\n\n## Roadmap\n\n- v1: Just Leakage Detection\n- v2: Provides Benchmark of Isolation Methods\n\nhttps://mathspp.com/blog/how-to-create-a-python-package-in-2022\n\n## Development\n\nhttps://python-poetry.org/docs/basic-usage/\n\n```bash\n# python 3.10\n# Use Environment\npoetry config virtualenvs.in-project true\npoetry shell\npoetry install --without ci # --with ci\n\n\n# Test\npoetry build\ncp -r dist tests/dist\ncd tests\ndocker build . -t testmethod\npytest -s -o log_cli=true\npytest tests/test_derivation.py -k 'test_mything'\npytest --testmon\npytest --snapshot-update\n\n# Pytest watch\nptw\nptw -- --testmon\n\n# Watch a file during development\nnpm install -g nodemon\nnodemon -L experiments/auto_hyperparameter.py\n\n# Test-Publish\npoetry config repositories.testpypi https://test.pypi.org/legacy/\npoetry config http-basic.testpypi __token__ pypi-your-api-token-here\npoetry build\npoetry publish -r testpypi\n\n# Real Publish\npoetry config pypi-token.pypi pypi-your-token-here\n```\n\n### Documentation\n\nhttps://squidfunk.github.io/mkdocs-material/\nhttps://click.palletsprojects.com/en/8.1.x/\n\n```\npoetry shell\nmkdocs serve\n```\n\n# TODO\n\nLDIMBenchmark:\nData Cleansing before working with them\n\n- per sensor type, e.g. waterflow (cut of at 0)\n- removing datapoints which are clearly a malfunction\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "",
    "version": "0.2.67",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d50ae40253cd450fbd91e00aeb54174422981490c24c42f5e6071933ee45e627",
                "md5": "6210c19c3194425db0f8a2a9ffc92525",
                "sha256": "085c388cb12044bfe32e9c688bf224162782b3219b9ab09bfd5f758648c0421e"
            },
            "downloads": -1,
            "filename": "ldimbenchmark-0.2.67-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6210c19c3194425db0f8a2a9ffc92525",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4",
            "size": 90509,
            "upload_time": "2023-07-29T22:03:27",
            "upload_time_iso_8601": "2023-07-29T22:03:27.004674Z",
            "url": "https://files.pythonhosted.org/packages/d5/0a/e40253cd450fbd91e00aeb54174422981490c24c42f5e6071933ee45e627/ldimbenchmark-0.2.67-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "34906623ad082b92048f043026e9ce592a33637678e864bb3cb0b717f7ceb122",
                "md5": "c12a47ef113c0e6fba078f64ab658c78",
                "sha256": "e62d58e7104a6328d0c22e25d0bc49818417159b0fb6b64037bf5f3a42de9a1e"
            },
            "downloads": -1,
            "filename": "ldimbenchmark-0.2.67.tar.gz",
            "has_sig": false,
            "md5_digest": "c12a47ef113c0e6fba078f64ab658c78",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4",
            "size": 72760,
            "upload_time": "2023-07-29T22:03:28",
            "upload_time_iso_8601": "2023-07-29T22:03:28.193114Z",
            "url": "https://files.pythonhosted.org/packages/34/90/6623ad082b92048f043026e9ce592a33637678e864bb3cb0b717f7ceb122/ldimbenchmark-0.2.67.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-29 22:03:28",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ldimbenchmark"
}
        
Elapsed time: 0.11078s