Name | leaderbot JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | Leaderboard for chatbots |
upload_time | 2024-12-25 05:34:27 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | None |
keywords |
leaderboard
bot
chat
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. image:: docs/source/_static/images/icons/logo-leaderbot-light.png
:align: left
:width: 240
:class: custom-dark
*leaderbot* is a python package that provides a **leader**\ board for
chat\ **bot**\ s based on `Chatbot Arena <https://lmarena.ai/>`_ project.
Install
=======
Install with ``pip``:
.. code-block::
pip install leaderbot
Alternatively, clone the source code and install with
.. code-block::
cd source_dir
pip install .
Build Documentation
===================
.. code-block::
cd docs
make clean html
The documentation can be viewed at ``/docs/build/html/index.html``, which
includes the `API` reference of classes and functions with their usage.
Quick Usage
===========
The package provides several statistical models (see API reference for
details). In the example below, we use ``leaderbot.models.Davidson`` class to
build a model. However, working with other models is similar.
Create and Train a Model
------------------------
.. code-block:: python
>>> from leaderbot.data import load
>>> from leaderbot.models import Davidson
>>> # Create a model
>>> data = load()
>>> model = Davidson(data)
>>> # Train the model
>>> model.train()
Leaderboard Table
-----------------
To print leaderboard table of the chatbot agents, use
``leaderbot.models.Davidson.leaderboard`` function:
.. code-block:: python
>>> # Leaderboard table
>>> model.leaderboard(plot=True)
The above code prints the table below:
::
+---------------------------+--------+--------+---------------+---------------+
| | | num | observed | predicted |
| rnk agent | score | match | win loss tie | win loss tie |
+---------------------------+--------+--------+---------------+---------------+
| 1. chatgpt-4o-latest | +0.221 | 11798 | 53% 23% 24% | 55% 25% 20% |
| 2. gemini-1.5-pro-ex... | +0.200 | 16700 | 51% 26% 23% | 52% 27% 20% |
| 3. gpt-4o-2024-05-13 | +0.181 | 66560 | 51% 26% 23% | 52% 28% 20% |
| 4. gpt-4o-mini-2024-... | +0.171 | 15929 | 46% 29% 25% | 48% 31% 21% |
| 5. claude-3-5-sonnet... | +0.170 | 40587 | 47% 31% 22% | 48% 32% 21% |
| 6. gemini-advanced-0514 | +0.167 | 44319 | 49% 29% 22% | 50% 30% 21% |
| 7. llama-3.1-405b-in... | +0.161 | 15680 | 44% 32% 24% | 45% 34% 21% |
| 8. gpt-4o-2024-08-06 | +0.159 | 7796 | 43% 32% 25% | 45% 34% 21% |
| 9. gemini-1.5-pro-ap... | +0.159 | 57941 | 47% 31% 22% | 48% 32% 21% |
| 10. gemini-1.5-pro-ap... | +0.156 | 48381 | 52% 28% 20% | 52% 28% 20% |
| 11. athene-70b-0725 | +0.149 | 9125 | 43% 35% 22% | 43% 36% 21% |
| 12. gpt-4-turbo-2024-... | +0.148 | 73106 | 47% 29% 24% | 49% 31% 21% |
| 13. mistral-large-2407 | +0.147 | 9309 | 41% 35% 25% | 43% 37% 21% |
| 14. llama-3.1-70b-ins... | +0.143 | 10946 | 41% 36% 22% | 42% 37% 21% |
| 15. claude-3-opus-202... | +0.141 | 134831 | 49% 29% 21% | 50% 30% 20% |
| 16. gpt-4-1106-preview | +0.141 | 81545 | 53% 25% 22% | 54% 26% 20% |
| 17. yi-large-preview | +0.134 | 42947 | 46% 32% 22% | 47% 33% 21% |
| 18. gpt-4-0125-preview | +0.134 | 74890 | 49% 28% 23% | 50% 29% 20% |
| 19. gemini-1.5-flash-... | +0.125 | 45312 | 43% 35% 22% | 43% 36% 21% |
| 20. reka-core-20240722 | +0.125 | 5518 | 39% 39% 22% | 40% 39% 21% |
| 21. deepseek-v2-api-0628 | +0.115 | 13075 | 37% 39% 24% | 39% 40% 21% |
| 22. gemma-2-27b-it | +0.114 | 22252 | 38% 38% 24% | 40% 39% 21% |
| 23. deepseek-coder-v2... | +0.114 | 3162 | 35% 42% 24% | 36% 43% 21% |
| 24. yi-large | +0.109 | 13563 | 40% 37% 24% | 41% 38% 21% |
| 25. bard-jan-24-gemin... | +0.106 | 10499 | 53% 31% 15% | 51% 29% 20% |
| 26. nemotron-4-340b-i... | +0.106 | 16979 | 40% 37% 23% | 41% 38% 21% |
| 27. llama-3-70b-instruct | +0.104 | 133374 | 42% 36% 22% | 43% 37% 21% |
| 28. glm-4-0520 | +0.102 | 8271 | 39% 38% 23% | 40% 39% 21% |
| 29. reka-flash-20240722 | +0.100 | 5397 | 34% 44% 22% | 34% 45% 21% |
| 30. reka-core-20240501 | +0.097 | 51460 | 38% 39% 23% | 39% 40% 21% |
+---------------------------+--------+--------+---------------+---------------+
The above code also produces the following plot of the frequencies and
probabilities of win, loss, and tie of the matches.
.. image:: docs/source/_static/images/plots/rank.png
Score Plot
----------
The scores versus rank can be plotted by ``leaderbot.Davidson.plot_scores``
function:
.. code-block:: python
>>> model.plot_scores(max_rank=30)
.. image:: docs/source/_static/images/plots/scores.png
:align: center
:class: custom-dark
Visualize Correlation
---------------------
The correlation of the chatbot performances can be visualized with
``leaderbot.models.Davidson.visualize`` using various methods. Here is an
example with the Kernel PCA method:
.. code-block:: python
>>> # Plot kernel PCA
>>> model.visualize(max_rank=50)
The above code produces plot below demonstrating the Kernel PCA projection on
three principal axes:
.. image:: docs/source/_static/images/plots/kpca.png
:align: center
:class: custom-dark
Match Matrices
--------------
The match matrices of the counts or densities of wins and ties can be
visualized with ``leaderbot.models.Davidson.match_matrix`` function:
.. code-block:: python
>>> # Match matrix for probability density of win and tie
>>> model.match_matrix(max_rank=20, density=True)
.. image:: docs/source/_static/images/plots/match_matrix_density_true.png
:align: center
:class: custom-dark
The same plot for the counts (as opposed to density) of the win and ties are
plotted as follows:
.. code-block:: python
>>> # Match matrix for frequency of win and tie
>>> model.match_matrix(max_rank=20, density=False)
.. image:: docs/source/_static/images/plots/match_matrix_density_false.png
:align: center
:class: custom-dark
Make Inference and Prediction
-----------------------------
Once a model is trained, you can make inference on the probabilities of win,
loss, or tie for a pair of agents using ``leaderbot.models.Davidson.infer``
method:
.. code-block:: python
>>> # Create a list of three matches using pairs of indices of agents
>>> matches = zip((0, 1, 2), (1, 2, 0))
>>> # Make inference
>>> prob = model.infer(matches)
>>> # Make prediction
>>> pred = model.predict(mathces)
Model Evaluation
----------------
Performance of multiple models can be compared as follows. First, create a
list of models and train them.
.. code-block:: python
>>> import leaderbot as lb
>>> # Obtain data
>>> data = lb.data.load()
>>> # Split data to training and test data
>>> training_data, test_data = lb.data.split(data, test_ratio=0.2)
>>> # Create a list of models to compare
>>> models = [
... lb.models.BradleyTerry(training_data),
... lb.models.BradleyTerryScaled(training_data),
... lb.models.BradleyTerryScaledR(training_data),
... lb.models.RaoKupper(training_data),
... lb.models.RaoKupperScaled(training_data),
... lb.models.RaoKupperScaledR(training_data),
... lb.models.Davidson(training_data),
... lb.models.DavidsonScaled(training_data),
... lb.models.DavidsonScaledR(training_data)
... ]
>>> # Train models
>>> for model in models:
... model.train()
Model Selection
...............
Model selection can be performed with ``leaderbot.evaluate.model_selection``:
.. code-block:: python
>>> # Evaluate models
>>> metrics = lb.evaluate.model_selection(models, report=True)
The above model evaluation performs the analysis via various metric including
the negative log-likelihood (NLL), cross entropy loss (CEL), Akaike information
criterion (AIC), and Bayesian information criterion (BIC), and prints a report
these metrics the following table:
::
+-----------------------+---------+--------+--------+--------+---------+
| model | # param | NLL | CEL | AIC | BIC |
+-----------------------+---------+--------+--------+--------+---------+
| BradleyTerry | 129 | 0.6544 | inf | 256.69 | 1020.94 |
| BradleyTerryScaled | 258 | 0.6542 | inf | 514.69 | 2043.20 |
| BradleyTerryScaledR | 259 | 0.6542 | inf | 516.69 | 2051.12 |
| RaoKupper | 130 | 1.0080 | 1.0080 | 257.98 | 1028.16 |
| RaoKupperScaled | 259 | 1.0077 | 1.0077 | 515.98 | 2050.41 |
| RaoKupperScaledR | 260 | 1.0077 | 1.0077 | 517.98 | 2058.34 |
| Davidson | 130 | 1.0085 | 1.0085 | 257.98 | 1028.16 |
| DavidsonScaled | 259 | 1.0083 | 1.0083 | 515.98 | 2050.41 |
| DavidsonScaledR | 260 | 1.0083 | 1.0083 | 517.98 | 2058.34 |
+-----------------------+---------+--------+--------+--------+---------+
Goodness of Fit
...............
The goodness of fit test can be performed with
``leaderbot.evaluate.goodness_of_fit``:
.. code-block:: python
>>> # Evaluate models
>>> metrics = lb.evaluate.goodness_of_fit(models, report=True)
The above model evaluation performs the analysis of the goodness of fit using
mean absolute error (MAE), KL divergence (KLD), Jensen-Shannon divergence
(JSD), and prints the following summary table:
::
+-----------------------+----------------------------+--------+--------+
| | Mean Absolute Error | | |
| model | win loss tie all | KLD | JSD % |
+-----------------------+----------------------------+--------+--------+
| BradleyTerry | 10.98 10.98 ----- 10.98 | 0.0199 | 0.5687 |
| BradleyTerryScaled | 10.44 10.44 ----- 10.44 | 0.0189 | 0.5409 |
| BradleyTerryScaledR | 10.42 10.42 ----- 10.42 | 0.0188 | 0.5396 |
| RaoKupper | 8.77 9.10 11.66 9.84 | 0.0331 | 0.9176 |
| RaoKupperScaled | 8.47 8.55 11.67 9.56 | 0.0322 | 0.8919 |
| RaoKupperScaledR | 8.40 8.56 11.66 9.54 | 0.0322 | 0.8949 |
| Davidson | 8.91 9.36 12.40 10.22 | 0.0341 | 0.9445 |
| DavidsonScaled | 8.75 8.74 12.47 9.99 | 0.0332 | 0.9217 |
| DavidsonScaledR | 8.73 8.72 12.48 9.98 | 0.0331 | 0.9201 |
+-----------------------+----------------------------+--------+--------+
Generalization
..............
The generalization test can be performed with
``leaderbot.evaluate.generalization``:
.. code-block:: python
>>> # Evaluate models
>>> metrics = lb.evaluate.generalization(models, test_data, report=True)
The above model evaluation computes prediction error via mean absolute
error (MAE), KL divergence (KLD), Jensen-Shannon divergence
(JSD), and prints the following summary table:
::
+-----------------------+----------------------------+--------+--------+
| | Mean Absolute Error | | |
| model | win loss tie all | KLD | JSD % |
+-----------------------+----------------------------+--------+--------+
| BradleyTerry | 10.98 10.98 ----- 10.98 | 0.0199 | 0.5687 |
| BradleyTerryScaled | 10.44 10.44 ----- 10.44 | 0.0189 | 0.5409 |
| BradleyTerryScaledR | 10.42 10.42 ----- 10.42 | 0.0188 | 0.5396 |
| RaoKupper | 8.77 9.10 11.66 9.84 | 0.0331 | 0.9176 |
| RaoKupperScaled | 8.47 8.55 11.67 9.56 | 0.0322 | 0.8919 |
| RaoKupperScaledR | 8.40 8.56 11.66 9.54 | 0.0322 | 0.8949 |
| Davidson | 8.91 9.36 12.40 10.22 | 0.0341 | 0.9445 |
| DavidsonScaled | 8.75 8.74 12.47 9.99 | 0.0332 | 0.9217 |
| DavidsonScaledR | 8.73 8.72 12.48 9.98 | 0.0331 | 0.9201 |
+-----------------------+----------------------------+--------+--------+
Comparing Ranking of Models
...........................
Ranking of various models can be compared using
``leaderbot.evaluate.comopare_rank`` function:
.. code-block:: python
>>> import leaderbot as lb
>>> from leaderbot.models import BradleyTerryFactor as BTF
>>> from leaderbot.models import RaoKupperFactor as RKF
>>> from leaderbot.models import DavidsonFactor as DVF
>>> # Load data
>>> data = lb.data.load()
>>> # Create a list of models to compare
>>> models = [
... BTF(data, n_cov_factors=0),
... BTF(data, n_cov_factors=3),
... RKF(data, n_cov_factors=0, n_tie_factors=0),
... RKF(data, n_cov_factors=0, n_tie_factors=1),
... RKF(data, n_cov_factors=0, n_tie_factors=3),
... DVF(data, n_cov_factors=0, n_tie_factors=0),
... DVF(data, n_cov_factors=0, n_tie_factors=1),
... DVF(data, n_cov_factors=0, n_tie_factors=3)
... ]
>>> # Train the models
>>> for model in models: model.train()
>>> # Compare ranking of the models
>>> lb.evaluate.compare_ranks(models, rank_range=[40, 70])
The above code produces plot below.
.. image:: docs/source/_static/images/plots/bump_chart.png
:align: center
:class: custom-dark
Test
====
You may test the package with `tox <https://tox.wiki/>`__:
.. code-block::
cd source_dir
tox
Alternatively, test with `pytest <https://pytest.org>`__:
.. code-block::
cd source_dir
pytest
How to Contribute
=================
We welcome contributions via GitHub's pull request. Developers should review
our [Contributing Guidelines](CONTRIBUTING.rst) before submitting their code.
If you do not feel comfortable modifying the code, we also welcome feature
requests and bug reports.
.. _index_publications:
.. Publications
.. ============
..
.. For information on how to cite |project|, publications, and software
.. packages that used |project|, see:
License
=======
This project uses a BSD 3-clause license in hopes that it will be accessible to
most projects. If you require a different license, please raise an issue and we
will consider a dual license.
.. |pypi| image:: https://img.shields.io/pypi/v/leaderbot
.. |traceflows-light| image:: _static/images/icons/logo-leaderbot-light.svg
:height: 23
:class: only-light
.. |traceflows-dark| image:: _static/images/icons/logo-leaderbot-dark.svg
:height: 23
:class: only-dark
Raw data
{
"_id": null,
"home_page": null,
"name": "leaderbot",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "leaderboard bot chat",
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/90/91/da44d82afdd82bd1c44ec3f971eb189e16c572f5e333c87fee5c80f0d74b/leaderbot-0.2.0.tar.gz",
"platform": "Linux",
"description": ".. image:: docs/source/_static/images/icons/logo-leaderbot-light.png\n :align: left\n :width: 240\n :class: custom-dark\n\n*leaderbot* is a python package that provides a **leader**\\ board for\nchat\\ **bot**\\ s based on `Chatbot Arena <https://lmarena.ai/>`_ project.\n\nInstall\n=======\n\nInstall with ``pip``:\n\n.. code-block::\n\n pip install leaderbot\n\nAlternatively, clone the source code and install with\n\n.. code-block::\n\n cd source_dir\n pip install .\n\nBuild Documentation\n===================\n\n.. code-block::\n\n cd docs\n make clean html\n\nThe documentation can be viewed at ``/docs/build/html/index.html``, which\nincludes the `API` reference of classes and functions with their usage.\n\nQuick Usage\n===========\n\nThe package provides several statistical models (see API reference for\ndetails). In the example below, we use ``leaderbot.models.Davidson`` class to\nbuild a model. However, working with other models is similar.\n\nCreate and Train a Model\n------------------------\n\n.. code-block:: python\n\n >>> from leaderbot.data import load\n >>> from leaderbot.models import Davidson\n\n >>> # Create a model\n >>> data = load()\n >>> model = Davidson(data)\n\n >>> # Train the model\n >>> model.train()\n\nLeaderboard Table\n-----------------\n\nTo print leaderboard table of the chatbot agents, use\n``leaderbot.models.Davidson.leaderboard`` function:\n\n.. code-block:: python\n\n >>> # Leaderboard table\n >>> model.leaderboard(plot=True)\n\nThe above code prints the table below:\n\n::\n\n +---------------------------+--------+--------+---------------+---------------+\n | | | num | observed | predicted |\n | rnk agent | score | match | win loss tie | win loss tie |\n +---------------------------+--------+--------+---------------+---------------+\n | 1. chatgpt-4o-latest | +0.221 | 11798 | 53% 23% 24% | 55% 25% 20% |\n | 2. gemini-1.5-pro-ex... | +0.200 | 16700 | 51% 26% 23% | 52% 27% 20% |\n | 3. gpt-4o-2024-05-13 | +0.181 | 66560 | 51% 26% 23% | 52% 28% 20% |\n | 4. gpt-4o-mini-2024-... | +0.171 | 15929 | 46% 29% 25% | 48% 31% 21% |\n | 5. claude-3-5-sonnet... | +0.170 | 40587 | 47% 31% 22% | 48% 32% 21% |\n | 6. gemini-advanced-0514 | +0.167 | 44319 | 49% 29% 22% | 50% 30% 21% |\n | 7. llama-3.1-405b-in... | +0.161 | 15680 | 44% 32% 24% | 45% 34% 21% |\n | 8. gpt-4o-2024-08-06 | +0.159 | 7796 | 43% 32% 25% | 45% 34% 21% |\n | 9. gemini-1.5-pro-ap... | +0.159 | 57941 | 47% 31% 22% | 48% 32% 21% |\n | 10. gemini-1.5-pro-ap... | +0.156 | 48381 | 52% 28% 20% | 52% 28% 20% |\n | 11. athene-70b-0725 | +0.149 | 9125 | 43% 35% 22% | 43% 36% 21% |\n | 12. gpt-4-turbo-2024-... | +0.148 | 73106 | 47% 29% 24% | 49% 31% 21% |\n | 13. mistral-large-2407 | +0.147 | 9309 | 41% 35% 25% | 43% 37% 21% |\n | 14. llama-3.1-70b-ins... | +0.143 | 10946 | 41% 36% 22% | 42% 37% 21% |\n | 15. claude-3-opus-202... | +0.141 | 134831 | 49% 29% 21% | 50% 30% 20% |\n | 16. gpt-4-1106-preview | +0.141 | 81545 | 53% 25% 22% | 54% 26% 20% |\n | 17. yi-large-preview | +0.134 | 42947 | 46% 32% 22% | 47% 33% 21% |\n | 18. gpt-4-0125-preview | +0.134 | 74890 | 49% 28% 23% | 50% 29% 20% |\n | 19. gemini-1.5-flash-... | +0.125 | 45312 | 43% 35% 22% | 43% 36% 21% |\n | 20. reka-core-20240722 | +0.125 | 5518 | 39% 39% 22% | 40% 39% 21% |\n | 21. deepseek-v2-api-0628 | +0.115 | 13075 | 37% 39% 24% | 39% 40% 21% |\n | 22. gemma-2-27b-it | +0.114 | 22252 | 38% 38% 24% | 40% 39% 21% |\n | 23. deepseek-coder-v2... | +0.114 | 3162 | 35% 42% 24% | 36% 43% 21% |\n | 24. yi-large | +0.109 | 13563 | 40% 37% 24% | 41% 38% 21% |\n | 25. bard-jan-24-gemin... | +0.106 | 10499 | 53% 31% 15% | 51% 29% 20% |\n | 26. nemotron-4-340b-i... | +0.106 | 16979 | 40% 37% 23% | 41% 38% 21% |\n | 27. llama-3-70b-instruct | +0.104 | 133374 | 42% 36% 22% | 43% 37% 21% |\n | 28. glm-4-0520 | +0.102 | 8271 | 39% 38% 23% | 40% 39% 21% |\n | 29. reka-flash-20240722 | +0.100 | 5397 | 34% 44% 22% | 34% 45% 21% |\n | 30. reka-core-20240501 | +0.097 | 51460 | 38% 39% 23% | 39% 40% 21% |\n +---------------------------+--------+--------+---------------+---------------+\n\nThe above code also produces the following plot of the frequencies and\nprobabilities of win, loss, and tie of the matches.\n\n.. image:: docs/source/_static/images/plots/rank.png\n\nScore Plot\n----------\n\nThe scores versus rank can be plotted by ``leaderbot.Davidson.plot_scores``\nfunction:\n\n.. code-block:: python\n\n >>> model.plot_scores(max_rank=30)\n\n.. image:: docs/source/_static/images/plots/scores.png\n :align: center\n :class: custom-dark\n\nVisualize Correlation\n---------------------\n\nThe correlation of the chatbot performances can be visualized with\n``leaderbot.models.Davidson.visualize`` using various methods. Here is an\nexample with the Kernel PCA method:\n\n.. code-block:: python\n\n >>> # Plot kernel PCA\n >>> model.visualize(max_rank=50)\n\nThe above code produces plot below demonstrating the Kernel PCA projection on\nthree principal axes:\n\n.. image:: docs/source/_static/images/plots/kpca.png\n :align: center\n :class: custom-dark\n\nMatch Matrices\n--------------\n\nThe match matrices of the counts or densities of wins and ties can be\nvisualized with ``leaderbot.models.Davidson.match_matrix`` function:\n\n.. code-block:: python\n\n >>> # Match matrix for probability density of win and tie\n >>> model.match_matrix(max_rank=20, density=True)\n\n.. image:: docs/source/_static/images/plots/match_matrix_density_true.png\n :align: center\n :class: custom-dark\n\nThe same plot for the counts (as opposed to density) of the win and ties are\nplotted as follows:\n\n.. code-block:: python\n\n >>> # Match matrix for frequency of win and tie\n >>> model.match_matrix(max_rank=20, density=False)\n\n.. image:: docs/source/_static/images/plots/match_matrix_density_false.png\n :align: center\n :class: custom-dark\n\nMake Inference and Prediction\n-----------------------------\n\nOnce a model is trained, you can make inference on the probabilities of win,\nloss, or tie for a pair of agents using ``leaderbot.models.Davidson.infer``\nmethod:\n\n.. code-block:: python\n\n >>> # Create a list of three matches using pairs of indices of agents\n >>> matches = zip((0, 1, 2), (1, 2, 0))\n\n >>> # Make inference\n >>> prob = model.infer(matches)\n\n >>> # Make prediction\n >>> pred = model.predict(mathces)\n\nModel Evaluation\n----------------\n\nPerformance of multiple models can be compared as follows. First, create a\nlist of models and train them.\n\n.. code-block:: python\n\n >>> import leaderbot as lb\n\n >>> # Obtain data\n >>> data = lb.data.load()\n\n >>> # Split data to training and test data\n >>> training_data, test_data = lb.data.split(data, test_ratio=0.2)\n\n >>> # Create a list of models to compare\n >>> models = [\n ... lb.models.BradleyTerry(training_data),\n ... lb.models.BradleyTerryScaled(training_data),\n ... lb.models.BradleyTerryScaledR(training_data),\n ... lb.models.RaoKupper(training_data),\n ... lb.models.RaoKupperScaled(training_data),\n ... lb.models.RaoKupperScaledR(training_data),\n ... lb.models.Davidson(training_data),\n ... lb.models.DavidsonScaled(training_data),\n ... lb.models.DavidsonScaledR(training_data)\n ... ]\n\n >>> # Train models\n >>> for model in models:\n ... model.train()\n\nModel Selection\n...............\n\nModel selection can be performed with ``leaderbot.evaluate.model_selection``:\n\n.. code-block:: python\n\n >>> # Evaluate models\n >>> metrics = lb.evaluate.model_selection(models, report=True)\n\nThe above model evaluation performs the analysis via various metric including\nthe negative log-likelihood (NLL), cross entropy loss (CEL), Akaike information\ncriterion (AIC), and Bayesian information criterion (BIC), and prints a report\nthese metrics the following table:\n\n::\n\n +-----------------------+---------+--------+--------+--------+---------+\n | model | # param | NLL | CEL | AIC | BIC |\n +-----------------------+---------+--------+--------+--------+---------+\n | BradleyTerry | 129 | 0.6544 | inf | 256.69 | 1020.94 |\n | BradleyTerryScaled | 258 | 0.6542 | inf | 514.69 | 2043.20 |\n | BradleyTerryScaledR | 259 | 0.6542 | inf | 516.69 | 2051.12 |\n | RaoKupper | 130 | 1.0080 | 1.0080 | 257.98 | 1028.16 |\n | RaoKupperScaled | 259 | 1.0077 | 1.0077 | 515.98 | 2050.41 |\n | RaoKupperScaledR | 260 | 1.0077 | 1.0077 | 517.98 | 2058.34 |\n | Davidson | 130 | 1.0085 | 1.0085 | 257.98 | 1028.16 |\n | DavidsonScaled | 259 | 1.0083 | 1.0083 | 515.98 | 2050.41 |\n | DavidsonScaledR | 260 | 1.0083 | 1.0083 | 517.98 | 2058.34 |\n +-----------------------+---------+--------+--------+--------+---------+\n\nGoodness of Fit\n...............\n\nThe goodness of fit test can be performed with\n``leaderbot.evaluate.goodness_of_fit``:\n\n.. code-block:: python\n\n >>> # Evaluate models\n >>> metrics = lb.evaluate.goodness_of_fit(models, report=True)\n\nThe above model evaluation performs the analysis of the goodness of fit using\nmean absolute error (MAE), KL divergence (KLD), Jensen-Shannon divergence\n(JSD), and prints the following summary table:\n\n::\n\n +-----------------------+----------------------------+--------+--------+\n | | Mean Absolute Error | | |\n | model | win loss tie all | KLD | JSD % |\n +-----------------------+----------------------------+--------+--------+\n | BradleyTerry | 10.98 10.98 ----- 10.98 | 0.0199 | 0.5687 |\n | BradleyTerryScaled | 10.44 10.44 ----- 10.44 | 0.0189 | 0.5409 |\n | BradleyTerryScaledR | 10.42 10.42 ----- 10.42 | 0.0188 | 0.5396 |\n | RaoKupper | 8.77 9.10 11.66 9.84 | 0.0331 | 0.9176 |\n | RaoKupperScaled | 8.47 8.55 11.67 9.56 | 0.0322 | 0.8919 |\n | RaoKupperScaledR | 8.40 8.56 11.66 9.54 | 0.0322 | 0.8949 |\n | Davidson | 8.91 9.36 12.40 10.22 | 0.0341 | 0.9445 |\n | DavidsonScaled | 8.75 8.74 12.47 9.99 | 0.0332 | 0.9217 |\n | DavidsonScaledR | 8.73 8.72 12.48 9.98 | 0.0331 | 0.9201 |\n +-----------------------+----------------------------+--------+--------+\n\nGeneralization\n..............\n\nThe generalization test can be performed with\n``leaderbot.evaluate.generalization``:\n\n.. code-block:: python\n\n >>> # Evaluate models\n >>> metrics = lb.evaluate.generalization(models, test_data, report=True)\n\nThe above model evaluation computes prediction error via mean absolute\nerror (MAE), KL divergence (KLD), Jensen-Shannon divergence\n(JSD), and prints the following summary table:\n\n::\n\n +-----------------------+----------------------------+--------+--------+\n | | Mean Absolute Error | | |\n | model | win loss tie all | KLD | JSD % |\n +-----------------------+----------------------------+--------+--------+\n | BradleyTerry | 10.98 10.98 ----- 10.98 | 0.0199 | 0.5687 |\n | BradleyTerryScaled | 10.44 10.44 ----- 10.44 | 0.0189 | 0.5409 |\n | BradleyTerryScaledR | 10.42 10.42 ----- 10.42 | 0.0188 | 0.5396 |\n | RaoKupper | 8.77 9.10 11.66 9.84 | 0.0331 | 0.9176 |\n | RaoKupperScaled | 8.47 8.55 11.67 9.56 | 0.0322 | 0.8919 |\n | RaoKupperScaledR | 8.40 8.56 11.66 9.54 | 0.0322 | 0.8949 |\n | Davidson | 8.91 9.36 12.40 10.22 | 0.0341 | 0.9445 |\n | DavidsonScaled | 8.75 8.74 12.47 9.99 | 0.0332 | 0.9217 |\n | DavidsonScaledR | 8.73 8.72 12.48 9.98 | 0.0331 | 0.9201 |\n +-----------------------+----------------------------+--------+--------+\n\nComparing Ranking of Models\n...........................\n\nRanking of various models can be compared using\n``leaderbot.evaluate.comopare_rank`` function:\n\n.. code-block:: python\n\n >>> import leaderbot as lb\n >>> from leaderbot.models import BradleyTerryFactor as BTF\n >>> from leaderbot.models import RaoKupperFactor as RKF\n >>> from leaderbot.models import DavidsonFactor as DVF\n\n >>> # Load data\n >>> data = lb.data.load()\n\n >>> # Create a list of models to compare\n >>> models = [\n ... BTF(data, n_cov_factors=0),\n ... BTF(data, n_cov_factors=3),\n ... RKF(data, n_cov_factors=0, n_tie_factors=0),\n ... RKF(data, n_cov_factors=0, n_tie_factors=1),\n ... RKF(data, n_cov_factors=0, n_tie_factors=3),\n ... DVF(data, n_cov_factors=0, n_tie_factors=0),\n ... DVF(data, n_cov_factors=0, n_tie_factors=1),\n ... DVF(data, n_cov_factors=0, n_tie_factors=3)\n ... ]\n\n >>> # Train the models\n >>> for model in models: model.train()\n\n >>> # Compare ranking of the models\n >>> lb.evaluate.compare_ranks(models, rank_range=[40, 70])\n\nThe above code produces plot below.\n\n.. image:: docs/source/_static/images/plots/bump_chart.png\n :align: center\n :class: custom-dark\n\n\nTest\n====\n\nYou may test the package with `tox <https://tox.wiki/>`__:\n\n.. code-block::\n\n cd source_dir\n tox\n\nAlternatively, test with `pytest <https://pytest.org>`__:\n\n.. code-block::\n\n cd source_dir\n pytest\n\nHow to Contribute\n=================\n\nWe welcome contributions via GitHub's pull request. Developers should review\nour [Contributing Guidelines](CONTRIBUTING.rst) before submitting their code.\nIf you do not feel comfortable modifying the code, we also welcome feature\nrequests and bug reports.\n\n.. _index_publications:\n\n.. Publications\n.. ============\n..\n.. For information on how to cite |project|, publications, and software\n.. packages that used |project|, see:\n\nLicense\n=======\n\nThis project uses a BSD 3-clause license in hopes that it will be accessible to\nmost projects. If you require a different license, please raise an issue and we\nwill consider a dual license.\n\n.. |pypi| image:: https://img.shields.io/pypi/v/leaderbot\n.. |traceflows-light| image:: _static/images/icons/logo-leaderbot-light.svg\n :height: 23\n :class: only-light\n.. |traceflows-dark| image:: _static/images/icons/logo-leaderbot-dark.svg\n :height: 23\n :class: only-dark\n",
"bugtrack_url": null,
"license": null,
"summary": "Leaderboard for chatbots",
"version": "0.2.0",
"project_urls": null,
"split_keywords": [
"leaderboard",
"bot",
"chat"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "caffd423d5163dcc831b3c4e7031807802fd8115e5829fefa0e301d7b5a7ebeb",
"md5": "659d3c84789aa3ff0eea08894e1dec94",
"sha256": "3d6518dca8352ddebd36793407edaecf4ac14a1e9e68066cdaa0c9bb89e903cc"
},
"downloads": -1,
"filename": "leaderbot-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "659d3c84789aa3ff0eea08894e1dec94",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 143386,
"upload_time": "2024-12-25T05:34:26",
"upload_time_iso_8601": "2024-12-25T05:34:26.206284Z",
"url": "https://files.pythonhosted.org/packages/ca/ff/d423d5163dcc831b3c4e7031807802fd8115e5829fefa0e301d7b5a7ebeb/leaderbot-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9091da44d82afdd82bd1c44ec3f971eb189e16c572f5e333c87fee5c80f0d74b",
"md5": "91b39e013acf0d8f020ce66bf8daf070",
"sha256": "268a3236f943c6a0d97e79414d07f7f8df8fd2eb61c22a93a79cf8e4e755c51b"
},
"downloads": -1,
"filename": "leaderbot-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "91b39e013acf0d8f020ce66bf8daf070",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 90992,
"upload_time": "2024-12-25T05:34:27",
"upload_time_iso_8601": "2024-12-25T05:34:27.779288Z",
"url": "https://files.pythonhosted.org/packages/90/91/da44d82afdd82bd1c44ec3f971eb189e16c572f5e333c87fee5c80f0d74b/leaderbot-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-25 05:34:27",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "leaderbot"
}