| Name | leann JSON | 
            
| Version | 
                  0.3.4
                   
                  JSON | 
            
 | download  | 
            
| home_page | None  | 
            
| Summary | LEANN - The smallest vector index in the world. RAG Everything with LEANN! | 
            | upload_time | 2025-09-18 21:51:34 | 
            | maintainer | None | 
            
            | docs_url | None | 
            | author | LEANN Team | 
            
            | requires_python | >=3.9 | 
            
            
            | license | MIT | 
            | keywords | 
                
                    vector-database
                
                     rag
                
                     embeddings
                
                     search
                
                     ai
                 | 
            | VCS | 
                
                     | 
                
            
            | bugtrack_url | 
                
                 | 
             
            
            | requirements | 
                
                  No requirements were recorded.
                
             | 
            
| Travis-CI | 
                
                   No Travis.
                
             | 
            | coveralls test coverage | 
                
                   No coveralls.
                
             | 
        
        
            
            # LEANN - The smallest vector index in the world
LEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.
## Installation
```bash
# Default installation (includes both HNSW and DiskANN backends)
uv pip install leann
```
## Quick Start
```python
from leann import LeannBuilder, LeannSearcher, LeannChat
from pathlib import Path
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
# Build an index (choose backend: "hnsw" or "diskann")
builder = LeannBuilder(backend_name="hnsw")  # or "diskann" for large-scale deployments
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
builder.add_text("Tung Tung Tung Sahur called—they need their banana‑crocodile hybrid back")
builder.build_index(INDEX_PATH)
# Search
searcher = LeannSearcher(INDEX_PATH)
results = searcher.search("fantastical AI-generated creatures", top_k=1)
# Chat with your data
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
response = chat.ask("How much storage does LEANN save?", top_k=1)
```
## License
MIT License
            
         
        Raw data
        
            {
    "_id": null,
    "home_page": null,
    "name": "leann",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "vector-database, rag, embeddings, search, ai",
    "author": "LEANN Team",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d8/05/532ed3581eb5528bbfed74f120578c83002a44098203634f1b87f3dbeb47/leann-0.3.4.tar.gz",
    "platform": null,
    "description": "# LEANN - The smallest vector index in the world\n\nLEANN is a revolutionary vector database that democratizes personal AI. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using **97% less storage** than traditional solutions **without accuracy loss**.\n\n## Installation\n\n```bash\n# Default installation (includes both HNSW and DiskANN backends)\nuv pip install leann\n```\n\n## Quick Start\n\n```python\nfrom leann import LeannBuilder, LeannSearcher, LeannChat\nfrom pathlib import Path\nINDEX_PATH = str(Path(\"./\").resolve() / \"demo.leann\")\n\n# Build an index (choose backend: \"hnsw\" or \"diskann\")\nbuilder = LeannBuilder(backend_name=\"hnsw\")  # or \"diskann\" for large-scale deployments\nbuilder.add_text(\"LEANN saves 97% storage compared to traditional vector databases.\")\nbuilder.add_text(\"Tung Tung Tung Sahur called\u2014they need their banana\u2011crocodile hybrid back\")\nbuilder.build_index(INDEX_PATH)\n\n# Search\nsearcher = LeannSearcher(INDEX_PATH)\nresults = searcher.search(\"fantastical AI-generated creatures\", top_k=1)\n\n# Chat with your data\nchat = LeannChat(INDEX_PATH, llm_config={\"type\": \"hf\", \"model\": \"Qwen/Qwen3-0.6B\"})\nresponse = chat.ask(\"How much storage does LEANN save?\", top_k=1)\n```\n\n## License\n\nMIT License\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "LEANN - The smallest vector index in the world. RAG Everything with LEANN!",
    "version": "0.3.4",
    "project_urls": {
        "Issues": "https://github.com/yichuan-w/LEANN/issues",
        "Repository": "https://github.com/yichuan-w/LEANN"
    },
    "split_keywords": [
        "vector-database",
        " rag",
        " embeddings",
        " search",
        " ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "04275c0a45d6e7a1b5c06479501ad5d05e99900c1597762475c06ceadf3f1108",
                "md5": "237a5e3f114d23fca61a36b1c5be7b04",
                "sha256": "78d4f86b629f6805aeb3b491c5a1213db74ff0328f46064635d56cabefc51695"
            },
            "downloads": -1,
            "filename": "leann-0.3.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "237a5e3f114d23fca61a36b1c5be7b04",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1917,
            "upload_time": "2025-09-18T21:49:49",
            "upload_time_iso_8601": "2025-09-18T21:49:49.886217Z",
            "url": "https://files.pythonhosted.org/packages/04/27/5c0a45d6e7a1b5c06479501ad5d05e99900c1597762475c06ceadf3f1108/leann-0.3.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d805532ed3581eb5528bbfed74f120578c83002a44098203634f1b87f3dbeb47",
                "md5": "76501ce65096783a71a2a85ab30e31f5",
                "sha256": "da281f5fc8d9024f950c6bea4766189718766e48edf33c96f1c38a4845eea344"
            },
            "downloads": -1,
            "filename": "leann-0.3.4.tar.gz",
            "has_sig": false,
            "md5_digest": "76501ce65096783a71a2a85ab30e31f5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 2115,
            "upload_time": "2025-09-18T21:51:34",
            "upload_time_iso_8601": "2025-09-18T21:51:34.626475Z",
            "url": "https://files.pythonhosted.org/packages/d8/05/532ed3581eb5528bbfed74f120578c83002a44098203634f1b87f3dbeb47/leann-0.3.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-18 21:51:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yichuan-w",
    "github_project": "LEANN",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "leann"
}