learning-pipeline-plugin


Namelearning-pipeline-plugin JSON
Version 0.6.0 PyPI version JSON
download
home_pagehttps://github.com/Idein/learning-pipeline-plugin
Summary
upload_time2023-07-03 02:26:45
maintainer
docs_urlNone
authorIdein Inc.
requires_python>=3.7.0,<3.11
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # learning-pipeline-plugin

Plugin for Actcast application.
This plugin provides a base Pipe class for selecting and collecting data.

## Usage

To collect data, create a pipe that inherits from `learning_pipeline_plugin.collect_pipe.CollectPipeBase`
and define `interpret_inputs()`.

Example:

```python
from typing import Optional
from learning_pipeline_plugin.collect_pipe import CollectPipeBase, DataDict
from learning_pipeline_plugin import sender_task

class CollectPipe(CollectPipeBase):
    def interpret_inputs(self, inputs) -> Optional[DataDict]:
        img, probs, feature = inputs
        return {
            "image": img,
            "feature_vector": feature,
            "other_data": {
                "probabilities": probs
            }
        }
```

`interpret_inputs()` gets the previous pipe output and must return `DataDict` or `None`.

`DataDict` is TypedDict for type hint, and must have following properties:

- `image`: PIL.Image
- `feature_vector`: vector with shape (N,)
- `other_data`: any data used for calculating uncertainty

Then, create a `SenderTask` instance and pass it the pipeline_id parameter corresponding to your pipeline.

```python
def main():
    [...]

    sender = sender_task.SenderTask(pipeline_id)
```

Finally, instantiate your `CollectPipe` and connect to other pipes:

```python
def main():
    [...]

    collect_pipe = CollectPipe(...)

    prev_pipe.connect(collect_pipe)
    collect_pipe.connect(next_pipe)
```

## Notifier

By default, the information output by this plugin is logged as an actlog through the Notifier instance.
Users can decide what information is output (and in what format), using a custom notifier.

To customize it, define a custom notifier class inheriting from AbstractNotifier,
and define `notify()` which gets a message as str.
Then, instantiate and pass it to the CollectPipe constructor.

Example of introducing a message length limit:
```python
from datetime import datetime, timezone
import actfw_core
from learning_pipeline_plugin.notifier import AbstractNotfier

class CustomNotifier(AbstractNotfier):
    def notify(self, message: str):
        if len(message) > 128:
            message = message[:128] + " <truncated>"
        actfw_core.notify(
            [
                {
                    "info": message,
                    "timestamp": datetime.now(timezone.utc).isoformat(),
                }
            ]
        )

def main():
    [...]

    collect_pipe = CollectPipe(
        ...,
        notifier=CustomNotifier()
    )
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Idein/learning-pipeline-plugin",
    "name": "learning-pipeline-plugin",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7.0,<3.11",
    "maintainer_email": "",
    "keywords": "",
    "author": "Idein Inc.",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/0d/a9/2ecea673674fa3971619514ed8464b18c4d45541e02b8beb8bdf8492b60b/learning_pipeline_plugin-0.6.0.tar.gz",
    "platform": null,
    "description": "# learning-pipeline-plugin\n\nPlugin for Actcast application.\nThis plugin provides a base Pipe class for selecting and collecting data.\n\n## Usage\n\nTo collect data, create a pipe that inherits from `learning_pipeline_plugin.collect_pipe.CollectPipeBase`\nand define `interpret_inputs()`.\n\nExample:\n\n```python\nfrom typing import Optional\nfrom learning_pipeline_plugin.collect_pipe import CollectPipeBase, DataDict\nfrom learning_pipeline_plugin import sender_task\n\nclass CollectPipe(CollectPipeBase):\n    def interpret_inputs(self, inputs) -> Optional[DataDict]:\n        img, probs, feature = inputs\n        return {\n            \"image\": img,\n            \"feature_vector\": feature,\n            \"other_data\": {\n                \"probabilities\": probs\n            }\n        }\n```\n\n`interpret_inputs()` gets the previous pipe output and must return `DataDict` or `None`.\n\n`DataDict` is TypedDict for type hint, and must have following properties:\n\n- `image`: PIL.Image\n- `feature_vector`: vector with shape (N,)\n- `other_data`: any data used for calculating uncertainty\n\nThen, create a `SenderTask` instance and pass it the pipeline_id parameter corresponding to your pipeline.\n\n```python\ndef main():\n    [...]\n\n    sender = sender_task.SenderTask(pipeline_id)\n```\n\nFinally, instantiate your `CollectPipe` and connect to other pipes:\n\n```python\ndef main():\n    [...]\n\n    collect_pipe = CollectPipe(...)\n\n    prev_pipe.connect(collect_pipe)\n    collect_pipe.connect(next_pipe)\n```\n\n## Notifier\n\nBy default, the information output by this plugin is logged as an actlog through the Notifier instance.\nUsers can decide what information is output (and in what format), using a custom notifier.\n\nTo customize it, define a custom notifier class inheriting from AbstractNotifier,\nand define `notify()` which gets a message as str.\nThen, instantiate and pass it to the CollectPipe constructor.\n\nExample of introducing a message length limit:\n```python\nfrom datetime import datetime, timezone\nimport actfw_core\nfrom learning_pipeline_plugin.notifier import AbstractNotfier\n\nclass CustomNotifier(AbstractNotfier):\n    def notify(self, message: str):\n        if len(message) > 128:\n            message = message[:128] + \" <truncated>\"\n        actfw_core.notify(\n            [\n                {\n                    \"info\": message,\n                    \"timestamp\": datetime.now(timezone.utc).isoformat(),\n                }\n            ]\n        )\n\ndef main():\n    [...]\n\n    collect_pipe = CollectPipe(\n        ...,\n        notifier=CustomNotifier()\n    )\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "",
    "version": "0.6.0",
    "project_urls": {
        "Homepage": "https://github.com/Idein/learning-pipeline-plugin",
        "Repository": "https://github.com/Idein/learning-pipeline-plugin"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f2b225ff1683de8be0f33fcb7d42b4e815540d80b587d9f2968598e764de6913",
                "md5": "64d3e551fbcd2a4697a379a1c9d22744",
                "sha256": "76ca270f88f28d479ea21a2bc30df7cc8e691df9c4edddf842b8b6b5ff16e1b5"
            },
            "downloads": -1,
            "filename": "learning_pipeline_plugin-0.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "64d3e551fbcd2a4697a379a1c9d22744",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7.0,<3.11",
            "size": 18859,
            "upload_time": "2023-07-03T02:26:43",
            "upload_time_iso_8601": "2023-07-03T02:26:43.209919Z",
            "url": "https://files.pythonhosted.org/packages/f2/b2/25ff1683de8be0f33fcb7d42b4e815540d80b587d9f2968598e764de6913/learning_pipeline_plugin-0.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0da92ecea673674fa3971619514ed8464b18c4d45541e02b8beb8bdf8492b60b",
                "md5": "0efc2584a430f3a416216d868f3d8b7b",
                "sha256": "3ae3fb69760e7669bdfbc779b5e64270a23600d91d91d0812fa4d3ec02b71d19"
            },
            "downloads": -1,
            "filename": "learning_pipeline_plugin-0.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0efc2584a430f3a416216d868f3d8b7b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7.0,<3.11",
            "size": 14274,
            "upload_time": "2023-07-03T02:26:45",
            "upload_time_iso_8601": "2023-07-03T02:26:45.107477Z",
            "url": "https://files.pythonhosted.org/packages/0d/a9/2ecea673674fa3971619514ed8464b18c4d45541e02b8beb8bdf8492b60b/learning_pipeline_plugin-0.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-03 02:26:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Idein",
    "github_project": "learning-pipeline-plugin",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "learning-pipeline-plugin"
}
        
Elapsed time: 0.15667s