![This is an image](https://cdn.pixabay.com/photo/2013/03/22/23/37/ferrari-96052_1280.png)
**What is Leclerc?**
Leclerc is a Sun Cable initiative that creates a PERT wrapper around levelised cost formulas to identify Monte Carlo trends in PERT inputs.
This package has derived work done by Heiko Onnen which can be found at: https://towardsdatascience.com/python-powered-monte-carlo-simulations-fc3c71b5b83f and https://towardsdatascience.com/python-scenario-analysis-modeling-expert-estimates-with-the-beta-pert-distribution-22a5e90cfa79.
**How to Install**
Running ```pip install leclerc``` will install the leclerc package.
To download with all dependencies, run ```python3 -m pip install --upgrade --no-cache-dir --use-deprecated=legacy-resolver leclerc```
**How to Use**
To use this package, call a formula and add the parameters. For inputs that have uncertainty, apply the PERT parameter. The output should give a bokeh html showcasing a histogram of the levelised cost parameter and PDF plots for inputs.
**Example Case for Area:**
```
@pert_monte_carlo
def rectangle_area(calculation, rectangle_name, length, height):
return height*length
results = rectangle_area(
"Area",
"rectangle_1",
PERT(min=1.0,mode=2.0,max=3.0, label="length"),
PERT(min=4.0,mode=5.0,max=6.0,label="height")
)
```
**Dependencies**
Leclerc uses the following packages:
* scipy
```pip install scipy```
* numpy
```pip install numpy```
* bokeh
```pip install bokeh```
* matplotlib
```pip install matplotlib```
Raw data
{
"_id": null,
"home_page": "https://pypi.org/project/leclerc/",
"name": "leclerc",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Montecarlo,levelised cost",
"author": "Luke Marhsall and Hoshang Mehta",
"author_email": "luke.marshall@suncable.energy",
"download_url": "https://files.pythonhosted.org/packages/e3/a0/03b1fc5b1abb4cfe0b5121daebbfa2483b3b7881b001bc9da7ecc71b7af2/leclerc-0.1.5.tar.gz",
"platform": null,
"description": "![This is an image](https://cdn.pixabay.com/photo/2013/03/22/23/37/ferrari-96052_1280.png)\n\n**What is Leclerc?**\n\nLeclerc is a Sun Cable initiative that creates a PERT wrapper around levelised cost formulas to identify Monte Carlo trends in PERT inputs.\nThis package has derived work done by Heiko Onnen which can be found at: https://towardsdatascience.com/python-powered-monte-carlo-simulations-fc3c71b5b83f and https://towardsdatascience.com/python-scenario-analysis-modeling-expert-estimates-with-the-beta-pert-distribution-22a5e90cfa79.\n\n**How to Install**\n\nRunning ```pip install leclerc``` will install the leclerc package. \n\nTo download with all dependencies, run ```python3 -m pip install --upgrade --no-cache-dir --use-deprecated=legacy-resolver leclerc```\n\n\n**How to Use**\n\nTo use this package, call a formula and add the parameters. For inputs that have uncertainty, apply the PERT parameter. The output should give a bokeh html showcasing a histogram of the levelised cost parameter and PDF plots for inputs. \n\n**Example Case for Area:**\n\n```\n@pert_monte_carlo\ndef rectangle_area(calculation, rectangle_name, length, height):\n\treturn height*length\n\t\nresults = rectangle_area(\n \"Area\",\n \"rectangle_1\",\n PERT(min=1.0,mode=2.0,max=3.0, label=\"length\"),\n PERT(min=4.0,mode=5.0,max=6.0,label=\"height\")\n)\n```\n\n**Dependencies**\n\nLeclerc uses the following packages:\n\n* scipy \n```pip install scipy```\n* numpy\n```pip install numpy```\n* bokeh\n```pip install bokeh```\n* matplotlib\n```pip install matplotlib```\n\n",
"bugtrack_url": null,
"license": "Open Source",
"summary": "Leclerc conducts a montecarlo analysis on a range of function files that involve formula derivation",
"version": "0.1.5",
"project_urls": {
"Homepage": "https://pypi.org/project/leclerc/"
},
"split_keywords": [
"montecarlo",
"levelised cost"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e3a003b1fc5b1abb4cfe0b5121daebbfa2483b3b7881b001bc9da7ecc71b7af2",
"md5": "3d3b357baac8f52179e5784c5ef01fba",
"sha256": "a1116cb57912a9a9e63f577d71a1c184730a9dc8c30adc8979357f71e2c7decf"
},
"downloads": -1,
"filename": "leclerc-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "3d3b357baac8f52179e5784c5ef01fba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4504,
"upload_time": "2023-05-03T04:32:51",
"upload_time_iso_8601": "2023-05-03T04:32:51.182572Z",
"url": "https://files.pythonhosted.org/packages/e3/a0/03b1fc5b1abb4cfe0b5121daebbfa2483b3b7881b001bc9da7ecc71b7af2/leclerc-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-03 04:32:51",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "leclerc"
}