[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Paper-Implementation-Template
A simple implementation of LeNet5 for practice for the book "Pytorch Pocket Reference"
LeNet is abunch of convolution and linear layers with max pools.
Paper Link
# Appreciation
* Lucidrains
* Agorians
# Install
`pip install lenet5`
# Usage
```python
import torch
from lenet5 import LeNet5
x = torch.randn(1, 3, 32, 32)
model = LeNet5()
result = model(x)
print(result)
print(result.shape)
print(result.dtype)
```
# Architecture
# Todo
# License
# Citations
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/LeNet5",
"name": "lenet5",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/eb/74/ca4e4907f286cc81833350d4d3d1439818f099d4263902fbc6c948b881dd/lenet5-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Paper-Implementation-Template\nA simple implementation of LeNet5 for practice for the book \"Pytorch Pocket Reference\"\n\nLeNet is abunch of convolution and linear layers with max pools.\n\nPaper Link\n\n# Appreciation\n* Lucidrains\n* Agorians\n\n\n\n# Install\n`pip install lenet5`\n\n# Usage\n```python\nimport torch\nfrom lenet5 import LeNet5\n\nx = torch.randn(1, 3, 32, 32)\n\nmodel = LeNet5()\n\nresult = model(x)\nprint(result)\nprint(result.shape)\nprint(result.dtype)\n```\n\n# Architecture\n\n# Todo\n\n\n# License\n\n# Citations\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/kyegomez/LeNet5",
"Repository": "https://github.com/kyegomez/LeNet5"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6adf2ff9f1cf245ae5d7f987c543fea7ae517d8a0ef7070e7673eb5f5b74f820",
"md5": "0c96f63ffe1fd1cc524438f5cbb8dd54",
"sha256": "6a44c70ed1ace48dfc8e51b9665e72fc0666250d50c0f233df0cdec27e720e5c"
},
"downloads": -1,
"filename": "lenet5-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0c96f63ffe1fd1cc524438f5cbb8dd54",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 3967,
"upload_time": "2023-08-31T17:02:15",
"upload_time_iso_8601": "2023-08-31T17:02:15.999965Z",
"url": "https://files.pythonhosted.org/packages/6a/df/2ff9f1cf245ae5d7f987c543fea7ae517d8a0ef7070e7673eb5f5b74f820/lenet5-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eb74ca4e4907f286cc81833350d4d3d1439818f099d4263902fbc6c948b881dd",
"md5": "d75db9a123bd11dda84318d835945747",
"sha256": "b28ba7092387d0b1418f18be557ff0fb4593170291b4089128690b70397706e2"
},
"downloads": -1,
"filename": "lenet5-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "d75db9a123bd11dda84318d835945747",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 3714,
"upload_time": "2023-08-31T17:02:17",
"upload_time_iso_8601": "2023-08-31T17:02:17.491471Z",
"url": "https://files.pythonhosted.org/packages/eb/74/ca4e4907f286cc81833350d4d3d1439818f099d4263902fbc6c948b881dd/lenet5-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-31 17:02:17",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "LeNet5",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "lenet5"
}