levis-pdfparse


Namelevis-pdfparse JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/lynner-haode/pdf_parser
SummaryPython parser for scientific PDF based on GROBID.
upload_time2023-03-22 09:38:15
maintainer
docs_urlNone
authorLevis
requires_python
license(c) MIT License 2023 Levis
keywords sci pdf parser grobid python pdf parser
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SciPDF Parser

A Python parser for scientific PDF based on [GROBID](https://github.com/kermitt2/grobid).

## Installation

Use `pip` to install from this Github repository

```bash
pip install git+https://github.com/titipata/scipdf_parser
```

**Note**
* We also need an `en_core_web_sm` model for spacy, where you can run `python -m spacy download en_core_web_sm` to download it
* You can change GROBID version in `serve_grobid.sh` to test the parser on a new GROBID version

## Usage

Run the GROBID using the given bash script before parsing PDF

```bash
bash serve_grobid.sh
```

This script will download GROBID and run the service at default port 8070 (see more [here](https://grobid.readthedocs.io/en/latest/Grobid-service/)).
To parse a PDF provided in `example_data` folder or direct URL, use the following function:

```python
import scipdf
article_dict = scipdf.parse_pdf_to_dict('example_data/futoma2017improved.pdf') # return dictionary
 
# option to parse directly from URL to PDF, if as_list is set to True, output 'text' of parsed section will be in a list of paragraphs instead
article_dict = scipdf.parse_pdf_to_dict('https://www.biorxiv.org/content/biorxiv/early/2018/11/20/463760.full.pdf', as_list=False)

# output example
>> {
    'title': 'Proceedings of Machine Learning for Healthcare',
    'abstract': '...',
    'sections': [
        {'heading': '...', 'text': '...'},
        {'heading': '...', 'text': '...'},
        ...
    ],
    'references': [
        {'title': '...', 'year': '...', 'journal': '...', 'author': '...'},
        ...
    ],
    'figures': [
        {'figure_label': '...', 'figure_type': '...', 'figure_id': '...', 'figure_caption': '...', 'figure_data': '...'},
        ...
    ],
    'doi': '...'
}

xml = scipdf.parse_pdf('example_data/futoma2017improved.pdf', soup=True) # option to parse full XML from GROBID
```

To parse figures from PDF using [pdffigures2](https://github.com/allenai/pdffigures2), you can run

```python
scipdf.parse_figures('example_data', output_folder='figures') # folder should contain only PDF files
```

You can see example output figures in `figures` folder.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lynner-haode/pdf_parser",
    "name": "levis-pdfparse",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "SCI,PDF parser,GROBID,Python PDF parser",
    "author": "Levis",
    "author_email": "lynner.haode@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c1/a1/e2b44246a6beefc42c5007cf9625ea71aca2d277f3632141712760a74ec2/levis_pdfparse-0.1.0.tar.gz",
    "platform": null,
    "description": "# SciPDF Parser\n\nA Python parser for scientific PDF based on [GROBID](https://github.com/kermitt2/grobid).\n\n## Installation\n\nUse `pip` to install from this Github repository\n\n```bash\npip install git+https://github.com/titipata/scipdf_parser\n```\n\n**Note**\n* We also need an `en_core_web_sm` model for spacy, where you can run `python -m spacy download en_core_web_sm` to download it\n* You can change GROBID version in `serve_grobid.sh` to test the parser on a new GROBID version\n\n## Usage\n\nRun the GROBID using the given bash script before parsing PDF\n\n```bash\nbash serve_grobid.sh\n```\n\nThis script will download GROBID and run the service at default port 8070 (see more [here](https://grobid.readthedocs.io/en/latest/Grobid-service/)).\nTo parse a PDF provided in `example_data` folder or direct URL, use the following function:\n\n```python\nimport scipdf\narticle_dict = scipdf.parse_pdf_to_dict('example_data/futoma2017improved.pdf') # return dictionary\n \n# option to parse directly from URL to PDF, if as_list is set to True, output 'text' of parsed section will be in a list of paragraphs instead\narticle_dict = scipdf.parse_pdf_to_dict('https://www.biorxiv.org/content/biorxiv/early/2018/11/20/463760.full.pdf', as_list=False)\n\n# output example\n>> {\n    'title': 'Proceedings of Machine Learning for Healthcare',\n    'abstract': '...',\n    'sections': [\n        {'heading': '...', 'text': '...'},\n        {'heading': '...', 'text': '...'},\n        ...\n    ],\n    'references': [\n        {'title': '...', 'year': '...', 'journal': '...', 'author': '...'},\n        ...\n    ],\n    'figures': [\n        {'figure_label': '...', 'figure_type': '...', 'figure_id': '...', 'figure_caption': '...', 'figure_data': '...'},\n        ...\n    ],\n    'doi': '...'\n}\n\nxml = scipdf.parse_pdf('example_data/futoma2017improved.pdf', soup=True) # option to parse full XML from GROBID\n```\n\nTo parse figures from PDF using [pdffigures2](https://github.com/allenai/pdffigures2), you can run\n\n```python\nscipdf.parse_figures('example_data', output_folder='figures') # folder should contain only PDF files\n```\n\nYou can see example output figures in `figures` folder.\n",
    "bugtrack_url": null,
    "license": "(c) MIT License 2023 Levis",
    "summary": "Python parser for scientific PDF based on GROBID.",
    "version": "0.1.0",
    "split_keywords": [
        "sci",
        "pdf parser",
        "grobid",
        "python pdf parser"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b8f821a139072b7fce90a389164d29ccc598c8bea3e0c7abe7445ef3a848a4b5",
                "md5": "e4d9aec817a3b0fefadb59df637ed30c",
                "sha256": "ea19a1fadf318f59ad4321aca40f6fa419b6c053a7a92792128f12d4f4f8c080"
            },
            "downloads": -1,
            "filename": "levis_pdfparse-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e4d9aec817a3b0fefadb59df637ed30c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 30169092,
            "upload_time": "2023-03-22T09:37:48",
            "upload_time_iso_8601": "2023-03-22T09:37:48.679403Z",
            "url": "https://files.pythonhosted.org/packages/b8/f8/21a139072b7fce90a389164d29ccc598c8bea3e0c7abe7445ef3a848a4b5/levis_pdfparse-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c1a1e2b44246a6beefc42c5007cf9625ea71aca2d277f3632141712760a74ec2",
                "md5": "589078d267731f34faefd05add875edf",
                "sha256": "6a4059e12389dc295cc36ca5def32ecda886f3eb43c0874a39de1e2afd4f9772"
            },
            "downloads": -1,
            "filename": "levis_pdfparse-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "589078d267731f34faefd05add875edf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30154891,
            "upload_time": "2023-03-22T09:38:15",
            "upload_time_iso_8601": "2023-03-22T09:38:15.160497Z",
            "url": "https://files.pythonhosted.org/packages/c1/a1/e2b44246a6beefc42c5007cf9625ea71aca2d277f3632141712760a74ec2/levis_pdfparse-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-22 09:38:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "lynner-haode",
    "github_project": "pdf_parser",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "levis-pdfparse"
}
        
Elapsed time: 0.62312s