libf0


Namelibf0 JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/groupmm/libf0
SummaryA Python Library for Fundamental Frequency Estimation in Music Recordings
upload_time2023-01-07 09:38:52
maintainer
docs_urlNone
authorSebastian Rosenzweig, Simon Schwär, and Meinard Müller
requires_python>=3.6
licenseMIT
keywords audio music f0 pitch yin pyin melodia swipe
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Python Package using Conda](https://github.com/groupmm/libf0/actions/workflows/test_conda.yml/badge.svg)](https://github.com/groupmm/libf0/actions/workflows/test_conda.yml)
[![Python package](https://github.com/groupmm/libf0/actions/workflows/test_pip.yml/badge.svg)](https://github.com/groupmm/libf0/actions/workflows/test_pip.yml)


# libf0

This repository contains a Python package called libf0 which provides open-source  implementations for four popular model-based F0-estimation approaches, YIN (Cheveigné & Kawahara, 2002), pYIN (Mauch & Dixon, 2014), an approach inspired by Melodia (Salamon & Gómez, 2012), and SWIPE (Camacho & Harris, 2008).

If you use the libf0 in your research, please consider the following references.

## References

Sebastian Rosenzweig, Simon Schwär, and Meinard Müller.
[libf0: A Python Library for Fundamental Frequency Estimation.](https://archives.ismir.net/ismir2022/latebreaking/000003.pdf)
In Late Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, 2022.

Alain de Cheveigné and Hideki Kawahara.
YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America (JASA), 111(4):1917–1930, 2002.

Matthias Mauch and Simon Dixon.
pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 659–663, Florence, Italy, 2014.

Justin Salamon and Emilia Gómez.
Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6):
1759–1770, 2012.

Arturo Camacho and John G. Harris.
A sawtooth waveform inspired pitch estimator for speech and music. The Journal of the Acoustical Society of America, 124(3):1638–1652, 2008.

Meinard Müller. Fundamentals of Music Processing – Using Python and Jupyter Notebooks. Springer Verlag, 2nd edition, 2021. ISBN 978-3-030-69807-2. doi: 10.1007/978-3-030-69808-9.


## Installing

If you just want to try our example notebook, you can run it using Binder directly in your browser: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/groupmm/libf0/HEAD)

To install the libf0 locally, you can use the Python package manager pip:

```
pip install libf0
```

We recommend to do this inside a conda or virtual environment (requiring at least Python 3.7).
If you want to run the example notebook locally, you **must** first install libf0 to resolve all dependencies. Then, you can clone this repository using

```
git clone https://github.com/groupmm/libf0.git
```
install Jupyter using

```
pip install jupyter
```

and then start the notebook server via

```
jupyter notebook
```


## Documentation
There is also an API documentation for libf0:

https://groupmm.github.io/libf0

## Contributing

We are happy for suggestions and contributions. We would be grateful for either directly contacting us via email (meinard.mueller@audiolabs-erlangen.de) or for creating an issue in our Github repository. Please do not submit a pull request without prior consultation with us.

## Tests

We provide automated tests for each algorithm. To execute the test script, you will need to install extra requirements for testing:

```
pip install 'libf0[tests]'
pytest tests
```

## Licence

The code for this toolbox is published under an MIT licence.

## Acknowledgements

This work was supported by the German Research Foundation (MU 2686/13-1, SCHE 280/20-1). We thank Edgar Suárez and Vojtěch Pešek for helping with the implementations. Furthermore, we thank Fatemeh Eftekhar and Maryam Pirmoradi for testing the toolbox. The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Fraunhofer Institute for Integrated Circuits IIS.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/groupmm/libf0",
    "name": "libf0",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "audio,music,f0,pitch,yin,pyin,melodia,swipe",
    "author": "Sebastian Rosenzweig, Simon Schw\u00e4r, and Meinard M\u00fcller",
    "author_email": "meinard.mueller@audiolabs-erlangen.de",
    "download_url": "https://files.pythonhosted.org/packages/47/18/8867ff287ab6d4259179f3af4bb5afc4612690c7e3f256e4315a7558f7d4/libf0-1.0.2.tar.gz",
    "platform": null,
    "description": "[![Python Package using Conda](https://github.com/groupmm/libf0/actions/workflows/test_conda.yml/badge.svg)](https://github.com/groupmm/libf0/actions/workflows/test_conda.yml)\n[![Python package](https://github.com/groupmm/libf0/actions/workflows/test_pip.yml/badge.svg)](https://github.com/groupmm/libf0/actions/workflows/test_pip.yml)\n\n\n# libf0\n\nThis repository contains a Python package called libf0 which provides open-source  implementations for four popular model-based F0-estimation approaches, YIN (Cheveign\u00e9 & Kawahara, 2002), pYIN (Mauch & Dixon, 2014), an approach inspired by Melodia (Salamon & G\u00f3mez, 2012), and SWIPE (Camacho & Harris, 2008).\n\nIf you use the libf0 in your research, please consider the following references.\n\n## References\n\nSebastian Rosenzweig, Simon Schw\u00e4r, and Meinard M\u00fcller.\n[libf0: A Python Library for Fundamental Frequency Estimation.](https://archives.ismir.net/ismir2022/latebreaking/000003.pdf)\nIn Late Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, 2022.\n\nAlain de Cheveign\u00e9 and Hideki Kawahara.\nYIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America (JASA), 111(4):1917\u20131930, 2002.\n\nMatthias Mauch and Simon Dixon.\npYIN: A fundamental frequency estimator using probabilistic threshold distributions. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 659\u2013663, Florence, Italy, 2014.\n\nJustin Salamon and Emilia G\u00f3mez.\nMelody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6):\n1759\u20131770, 2012.\n\nArturo Camacho and John G. Harris.\nA sawtooth waveform inspired pitch estimator for speech and music. The Journal of the Acoustical Society of America, 124(3):1638\u20131652, 2008.\n\nMeinard M\u00fcller. Fundamentals of Music Processing \u2013 Using Python and Jupyter Notebooks. Springer Verlag, 2nd edition, 2021. ISBN 978-3-030-69807-2. doi: 10.1007/978-3-030-69808-9.\n\n\n## Installing\n\nIf you just want to try our example notebook, you can run it using Binder directly in your browser: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/groupmm/libf0/HEAD)\n\nTo install the libf0 locally, you can use the Python package manager pip:\n\n```\npip install libf0\n```\n\nWe recommend to do this inside a conda or virtual environment (requiring at least Python 3.7).\nIf you want to run the example notebook locally, you **must** first install libf0 to resolve all dependencies. Then, you can clone this repository using\n\n```\ngit clone https://github.com/groupmm/libf0.git\n```\ninstall Jupyter using\n\n```\npip install jupyter\n```\n\nand then start the notebook server via\n\n```\njupyter notebook\n```\n\n\n## Documentation\nThere is also an API documentation for libf0:\n\nhttps://groupmm.github.io/libf0\n\n## Contributing\n\nWe are happy for suggestions and contributions. We would be grateful for either directly contacting us via email (meinard.mueller@audiolabs-erlangen.de) or for creating an issue in our Github repository. Please do not submit a pull request without prior consultation with us.\n\n## Tests\n\nWe provide automated tests for each algorithm. To execute the test script, you will need to install extra requirements for testing:\n\n```\npip install 'libf0[tests]'\npytest tests\n```\n\n## Licence\n\nThe code for this toolbox is published under an MIT licence.\n\n## Acknowledgements\n\nThis work was supported by the German Research Foundation (MU 2686/13-1, SCHE 280/20-1). We thank Edgar Su\u00e1rez and Vojt\u011bch Pe\u0161ek for helping with the implementations. Furthermore, we thank Fatemeh Eftekhar and Maryam Pirmoradi for testing the toolbox. The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg (FAU) and Fraunhofer Institute for Integrated Circuits IIS.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python Library for Fundamental Frequency Estimation in Music Recordings",
    "version": "1.0.2",
    "split_keywords": [
        "audio",
        "music",
        "f0",
        "pitch",
        "yin",
        "pyin",
        "melodia",
        "swipe"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "83098ffc3cf235e9981615eeffddabc872ce601975eb522877bf9bad2065ca6c",
                "md5": "c701cc2d9286c63cd488c97ba0be8cec",
                "sha256": "8b2f4fc234eb6f1af5061b01613fcf477976604b865a236a4ac98e966bfd4587"
            },
            "downloads": -1,
            "filename": "libf0-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c701cc2d9286c63cd488c97ba0be8cec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 26028,
            "upload_time": "2023-01-07T09:38:51",
            "upload_time_iso_8601": "2023-01-07T09:38:51.269756Z",
            "url": "https://files.pythonhosted.org/packages/83/09/8ffc3cf235e9981615eeffddabc872ce601975eb522877bf9bad2065ca6c/libf0-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47188867ff287ab6d4259179f3af4bb5afc4612690c7e3f256e4315a7558f7d4",
                "md5": "4145635d6385e2244905bcbc8ab8868a",
                "sha256": "a679788d6604db60621ac28979f4024b81bae0752d9bf7d3205e15f37718f800"
            },
            "downloads": -1,
            "filename": "libf0-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4145635d6385e2244905bcbc8ab8868a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 23301,
            "upload_time": "2023-01-07T09:38:52",
            "upload_time_iso_8601": "2023-01-07T09:38:52.676809Z",
            "url": "https://files.pythonhosted.org/packages/47/18/8867ff287ab6d4259179f3af4bb5afc4612690c7e3f256e4315a7558f7d4/libf0-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-07 09:38:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "groupmm",
    "github_project": "libf0",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "libf0"
}
        
Elapsed time: 0.06079s