liesel


Nameliesel JSON
Version 0.4.1 PyPI version JSON
download
home_pageNone
SummaryA probabilistic programming framework with a focus on semi-parametric regression
upload_time2025-07-25 09:52:51
maintainerNone
docs_urlNone
authorPaul Wiemann, Hannes Riebl, Johannes Brachem, Gianmarco Callegher
requires_python>=3.13
licenseNone
keywords machine-learning statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- This README is for PyPI. The README for GitHub is in .github/README.md -->

# Liesel: A Probabilistic Programming Framework

<img src="https://raw.githubusercontent.com/liesel-devs/liesel/main/misc/logo/logo-light.png" alt="logo" align="right" width="185">

Liesel is a probabilistic programming framework with a focus on semi-parametric regression. It includes:

- [**Liesel**](https://github.com/liesel-devs/liesel), a library to express statistical models as Probabilistic Graphical Models (PGMs). Through the PGM representation, the user can build and update models in a natural way.
- **Goose**, a library to build custom MCMC algorithms with several parameter blocks and MCMC kernels such as the No U-Turn Sampler (NUTS), the Iteratively Weighted Least Squares (IWLS) sampler, or different Gibbs samplers. Goose also takes care of the MCMC bookkeeping and the chain post-processing.
- [**RLiesel**](https://github.com/liesel-devs/rliesel), an R interface for Liesel which assists the user with the configuration of semi-parametric regression models such as Generalized Additive Models for Location, Scale and Shape (GAMLSS) with different response distributions, spline-based smooth terms and shrinkage priors.

The name "Liesel" is an homage to the [Gänseliesel fountain](https://en.wikipedia.org/wiki/G%C3%A4nseliesel), landmark of Liesel's birth city [Göttingen](https://en.wikipedia.org/wiki/G%C3%B6ttingen).

## Resources

- [Paper on arXiv](https://arxiv.org/abs/2209.10975)
- [Liesel & Goose repo](https://github.com/liesel-devs/liesel)
- [Liesel & Goose API docs](https://docs.liesel-project.org)
- [RLiesel repo](https://github.com/liesel-devs/rliesel)
- [Tutorials](https://docs.liesel-project.org/en/latest/tutorials_overview.html)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "liesel",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.13",
    "maintainer_email": null,
    "keywords": "machine-learning, statistics",
    "author": "Paul Wiemann, Hannes Riebl, Johannes Brachem, Gianmarco Callegher",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/17/ca/4f439f411caddca16a5849b9b428f935cef0c9aab722bfa65b52ac732c03/liesel-0.4.1.tar.gz",
    "platform": null,
    "description": "<!-- This README is for PyPI. The README for GitHub is in .github/README.md -->\n\n# Liesel: A Probabilistic Programming Framework\n\n<img src=\"https://raw.githubusercontent.com/liesel-devs/liesel/main/misc/logo/logo-light.png\" alt=\"logo\" align=\"right\" width=\"185\">\n\nLiesel is a probabilistic programming framework with a focus on semi-parametric regression. It includes:\n\n- [**Liesel**](https://github.com/liesel-devs/liesel), a library to express statistical models as Probabilistic Graphical Models (PGMs). Through the PGM representation, the user can build and update models in a natural way.\n- **Goose**, a library to build custom MCMC algorithms with several parameter blocks and MCMC kernels such as the No U-Turn Sampler (NUTS), the Iteratively Weighted Least Squares (IWLS) sampler, or different Gibbs samplers. Goose also takes care of the MCMC bookkeeping and the chain post-processing.\n- [**RLiesel**](https://github.com/liesel-devs/rliesel), an R interface for Liesel which assists the user with the configuration of semi-parametric regression models such as Generalized Additive Models for Location, Scale and Shape (GAMLSS) with different response distributions, spline-based smooth terms and shrinkage priors.\n\nThe name \"Liesel\" is an homage to the [G\u00e4nseliesel fountain](https://en.wikipedia.org/wiki/G%C3%A4nseliesel), landmark of Liesel's birth city [G\u00f6ttingen](https://en.wikipedia.org/wiki/G%C3%B6ttingen).\n\n## Resources\n\n- [Paper on arXiv](https://arxiv.org/abs/2209.10975)\n- [Liesel & Goose repo](https://github.com/liesel-devs/liesel)\n- [Liesel & Goose API docs](https://docs.liesel-project.org)\n- [RLiesel repo](https://github.com/liesel-devs/rliesel)\n- [Tutorials](https://docs.liesel-project.org/en/latest/tutorials_overview.html)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A probabilistic programming framework with a focus on semi-parametric regression",
    "version": "0.4.1",
    "project_urls": {
        "Documentation": "https://liesel-project.org",
        "Homepage": "https://liesel-project.org",
        "Repository": "https://github.com/liesel-devs/liesel.git"
    },
    "split_keywords": [
        "machine-learning",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2152793fea8bd669965fc10b71effeff6d3b9ecf2d14eec09ab66ce732083d4f",
                "md5": "fdb190d9950d8aa7226ac89e55ab2715",
                "sha256": "ee345f983b33efae58374c6e123b8746add897b68be0515e8eaa60b1099727fa"
            },
            "downloads": -1,
            "filename": "liesel-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fdb190d9950d8aa7226ac89e55ab2715",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.13",
            "size": 125090,
            "upload_time": "2025-07-25T09:52:49",
            "upload_time_iso_8601": "2025-07-25T09:52:49.136644Z",
            "url": "https://files.pythonhosted.org/packages/21/52/793fea8bd669965fc10b71effeff6d3b9ecf2d14eec09ab66ce732083d4f/liesel-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "17ca4f439f411caddca16a5849b9b428f935cef0c9aab722bfa65b52ac732c03",
                "md5": "253029c03967f5c5b4f89098c96e8322",
                "sha256": "6eaffdfa84a57554f06cbdbb4fb16ad938bf240086cf34d50fbf52241e035731"
            },
            "downloads": -1,
            "filename": "liesel-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "253029c03967f5c5b4f89098c96e8322",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.13",
            "size": 7378521,
            "upload_time": "2025-07-25T09:52:51",
            "upload_time_iso_8601": "2025-07-25T09:52:51.493792Z",
            "url": "https://files.pythonhosted.org/packages/17/ca/4f439f411caddca16a5849b9b428f935cef0c9aab722bfa65b52ac732c03/liesel-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 09:52:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "liesel-devs",
    "github_project": "liesel",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "liesel"
}
        
Elapsed time: 0.54687s