lightgbm-callbacks


Namelightgbm-callbacks JSON
Version 0.1.16 PyPI version JSON
download
home_pagehttps://github.com/34j/lightgbm-callbacks
SummaryA collection of LightGBM callbacks.
upload_time2024-11-15 01:18:57
maintainerNone
docs_urlNone
author34j
requires_python<4.0,>=3.8
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LightGBM Callbacks

<p align="center">
  <a href="https://github.com/34j/lightgbm-callbacks/actions/workflows/ci.yml?query=branch%3Amain">
    <img src="https://img.shields.io/github/actions/workflow/status/34j/lightgbm-callbacks/ci.yml?branch=main&label=CI&logo=github&style=flat-square" alt="CI Status" >
  </a>
  <a href="https://lightgbm-callbacks.readthedocs.io">
    <img src="https://img.shields.io/readthedocs/lightgbm-callbacks.svg?logo=read-the-docs&logoColor=fff&style=flat-square" alt="Documentation Status">
  </a>
  <a href="https://codecov.io/gh/34j/lightgbm-callbacks">
    <img src="https://img.shields.io/codecov/c/github/34j/lightgbm-callbacks.svg?logo=codecov&logoColor=fff&style=flat-square" alt="Test coverage percentage">
  </a>
</p>
<p align="center">
  <a href="https://python-poetry.org/">
    <img src="https://img.shields.io/badge/packaging-poetry-299bd7?style=flat-square&logo=" alt="Poetry">
  </a>
  <a href="https://github.com/ambv/black">
    <img src="https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square" alt="black">
  </a>
  <a href="https://github.com/pre-commit/pre-commit">
    <img src="https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square" alt="pre-commit">
  </a>
</p>
<p align="center">
  <a href="https://pypi.org/project/lightgbm-callbacks/">
    <img src="https://img.shields.io/pypi/v/lightgbm-callbacks.svg?logo=python&logoColor=fff&style=flat-square" alt="PyPI Version">
  </a>
  <img src="https://img.shields.io/pypi/pyversions/lightgbm-callbacks.svg?style=flat-square&logo=python&amp;logoColor=fff" alt="Supported Python versions">
  <img src="https://img.shields.io/pypi/l/lightgbm-callbacks.svg?style=flat-square" alt="License">
</p>

A collection of [LightGBM](https://github.com/microsoft/LightGBM) [callbacks](https://lightgbm.readthedocs.io/en/latest/Python-API.html#callbacks).
Provides implementations of `ProgressBarCallback` ([#5867](https://github.com/microsoft/LightGBM/pull/5867)) and `DartEarlyStoppingCallback` ([#4805](https://github.com/microsoft/LightGBM/issues/4805)), as well as an `LGBMDartEarlyStoppingEstimator` that automatically passes these callbacks. ([#3313](https://github.com/microsoft/LightGBM/issues/3313), [#5808](https://github.com/microsoft/LightGBM/pull/5808))

## Installation

Install this via pip (or your favourite package manager):

```shell
pip install lightgbm-callbacks
```

## Usage

### SciKit-Learn API, simple

```python
from lightgbm import LGBMRegressor
from lightgbm_callbacks import LGBMDartEarlyStoppingEstimator
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split

X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
LGBMDartEarlyStoppingEstimator(
    LGBMRegressor(boosting_type="dart"), # or "gbdt", ...
    stopping_rounds=10, # or n_iter_no_change=10
    test_size=0.2, # or validation_fraction=0.2
    shuffle=False,
    tqdm_cls="rich", # "auto", "autonotebook", ...
).fit(X_train, y_train)
```

### Scikit-Learn API, manually passing callbacks

```python
from lightgbm import LGBMRegressor
from lightgbm_callbacks import ProgressBarCallback, DartEarlyStoppingCallback
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split

X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train)
early_stopping_callback = DartEarlyStoppingCallback(stopping_rounds=10)
LGBMRegressor(
).fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_val, y_val)],
    callbacks=[
        early_stopping_callback,
        ProgressBarCallback(early_stopping_callback=early_stopping_callback),
    ],
)
```

### Details on `DartEarlyStoppingCallback`

Below is a description of the `DartEarlyStoppingCallback` `method` parameter and `lgb.plot_metric` for each `lgb.LGBMRegressor(boosting_type="dart", n_estimators=1000)` trained with entire `sklearn_datasets.load_diabetes()` dataset.

| Method     | Description                                                                                  | iteration                                                   | Image                                 | Actual iteration |
| ---------- | -------------------------------------------------------------------------------------------- | ----------------------------------------------------------- | ------------------------------------- | ---------------- |
| (Baseline) | If Early stopping is not used.                                                               | `n_estimators`                                              | ![image](docs/_static/m_baseline.png) | 1000             |
| `"none"`   | Do nothing and return the original estimator.                                                | `min(best_iteration + early_stopping_rounds, n_estimators)` | ![image](docs/_static/m_none.png)     | 50               |
| `"save"`   | Save the best model by deepcopying the estimator and return the best model (using `pickle`). | `min(best_iteration + 1, n_estimators)`                     | ![image](docs/_static/m_save.png)     | 21               |
| `"refit"`  | Refit the estimator with the best iteration and return the refitted estimator.               | `min(best_iteration, n_estimators)`                         | ![image](docs/_static/m_refit.png)    | 20               |

## Contributors ✨

Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):

<!-- prettier-ignore-start -->
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
  <tbody>
    <tr>
      <td align="center" valign="top" width="14.28%"><a href="https://github.com/34j"><img src="https://avatars.githubusercontent.com/u/55338215?v=4?s=80" width="80px;" alt="34j"/><br /><sub><b>34j</b></sub></a><br /><a href="https://github.com/34j/lightgbm-callbacks/commits?author=34j" title="Code">💻</a> <a href="#ideas-34j" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/34j/lightgbm-callbacks/commits?author=34j" title="Documentation">📖</a></td>
    </tr>
  </tbody>
</table>

<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->

<!-- ALL-CONTRIBUTORS-LIST:END -->
<!-- prettier-ignore-end -->

This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/34j/lightgbm-callbacks",
    "name": "lightgbm-callbacks",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "34j",
    "author_email": "34j.95a2p@simplelogin.com",
    "download_url": "https://files.pythonhosted.org/packages/b4/0d/9d3dccec4fca6ba3b5ab2a202519e34ee8f54c37da9393cab49afc8fcc3c/lightgbm_callbacks-0.1.16.tar.gz",
    "platform": null,
    "description": "# LightGBM Callbacks\n\n<p align=\"center\">\n  <a href=\"https://github.com/34j/lightgbm-callbacks/actions/workflows/ci.yml?query=branch%3Amain\">\n    <img src=\"https://img.shields.io/github/actions/workflow/status/34j/lightgbm-callbacks/ci.yml?branch=main&label=CI&logo=github&style=flat-square\" alt=\"CI Status\" >\n  </a>\n  <a href=\"https://lightgbm-callbacks.readthedocs.io\">\n    <img src=\"https://img.shields.io/readthedocs/lightgbm-callbacks.svg?logo=read-the-docs&logoColor=fff&style=flat-square\" alt=\"Documentation Status\">\n  </a>\n  <a href=\"https://codecov.io/gh/34j/lightgbm-callbacks\">\n    <img src=\"https://img.shields.io/codecov/c/github/34j/lightgbm-callbacks.svg?logo=codecov&logoColor=fff&style=flat-square\" alt=\"Test coverage percentage\">\n  </a>\n</p>\n<p align=\"center\">\n  <a href=\"https://python-poetry.org/\">\n    <img src=\"https://img.shields.io/badge/packaging-poetry-299bd7?style=flat-square&logo=\" alt=\"Poetry\">\n  </a>\n  <a href=\"https://github.com/ambv/black\">\n    <img src=\"https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square\" alt=\"black\">\n  </a>\n  <a href=\"https://github.com/pre-commit/pre-commit\">\n    <img src=\"https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square\" alt=\"pre-commit\">\n  </a>\n</p>\n<p align=\"center\">\n  <a href=\"https://pypi.org/project/lightgbm-callbacks/\">\n    <img src=\"https://img.shields.io/pypi/v/lightgbm-callbacks.svg?logo=python&logoColor=fff&style=flat-square\" alt=\"PyPI Version\">\n  </a>\n  <img src=\"https://img.shields.io/pypi/pyversions/lightgbm-callbacks.svg?style=flat-square&logo=python&amp;logoColor=fff\" alt=\"Supported Python versions\">\n  <img src=\"https://img.shields.io/pypi/l/lightgbm-callbacks.svg?style=flat-square\" alt=\"License\">\n</p>\n\nA collection of [LightGBM](https://github.com/microsoft/LightGBM) [callbacks](https://lightgbm.readthedocs.io/en/latest/Python-API.html#callbacks).\nProvides implementations of `ProgressBarCallback` ([#5867](https://github.com/microsoft/LightGBM/pull/5867)) and `DartEarlyStoppingCallback` ([#4805](https://github.com/microsoft/LightGBM/issues/4805)), as well as an `LGBMDartEarlyStoppingEstimator` that automatically passes these callbacks. ([#3313](https://github.com/microsoft/LightGBM/issues/3313), [#5808](https://github.com/microsoft/LightGBM/pull/5808))\n\n## Installation\n\nInstall this via pip (or your favourite package manager):\n\n```shell\npip install lightgbm-callbacks\n```\n\n## Usage\n\n### SciKit-Learn API, simple\n\n```python\nfrom lightgbm import LGBMRegressor\nfrom lightgbm_callbacks import LGBMDartEarlyStoppingEstimator\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\nX, y = load_diabetes(return_X_y=True)\nX_train, X_test, y_train, y_test = train_test_split(X, y)\nLGBMDartEarlyStoppingEstimator(\n    LGBMRegressor(boosting_type=\"dart\"), # or \"gbdt\", ...\n    stopping_rounds=10, # or n_iter_no_change=10\n    test_size=0.2, # or validation_fraction=0.2\n    shuffle=False,\n    tqdm_cls=\"rich\", # \"auto\", \"autonotebook\", ...\n).fit(X_train, y_train)\n```\n\n### Scikit-Learn API, manually passing callbacks\n\n```python\nfrom lightgbm import LGBMRegressor\nfrom lightgbm_callbacks import ProgressBarCallback, DartEarlyStoppingCallback\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\nX, y = load_diabetes(return_X_y=True)\nX_train, X_test, y_train, y_test = train_test_split(X, y)\nX_train, X_val, y_train, y_val = train_test_split(X_train, y_train)\nearly_stopping_callback = DartEarlyStoppingCallback(stopping_rounds=10)\nLGBMRegressor(\n).fit(\n    X_train,\n    y_train,\n    eval_set=[(X_train, y_train), (X_val, y_val)],\n    callbacks=[\n        early_stopping_callback,\n        ProgressBarCallback(early_stopping_callback=early_stopping_callback),\n    ],\n)\n```\n\n### Details on `DartEarlyStoppingCallback`\n\nBelow is a description of the `DartEarlyStoppingCallback` `method` parameter and `lgb.plot_metric` for each `lgb.LGBMRegressor(boosting_type=\"dart\", n_estimators=1000)` trained with entire `sklearn_datasets.load_diabetes()` dataset.\n\n| Method     | Description                                                                                  | iteration                                                   | Image                                 | Actual iteration |\n| ---------- | -------------------------------------------------------------------------------------------- | ----------------------------------------------------------- | ------------------------------------- | ---------------- |\n| (Baseline) | If Early stopping is not used.                                                               | `n_estimators`                                              | ![image](docs/_static/m_baseline.png) | 1000             |\n| `\"none\"`   | Do nothing and return the original estimator.                                                | `min(best_iteration + early_stopping_rounds, n_estimators)` | ![image](docs/_static/m_none.png)     | 50               |\n| `\"save\"`   | Save the best model by deepcopying the estimator and return the best model (using `pickle`). | `min(best_iteration + 1, n_estimators)`                     | ![image](docs/_static/m_save.png)     | 21               |\n| `\"refit\"`  | Refit the estimator with the best iteration and return the refitted estimator.               | `min(best_iteration, n_estimators)`                         | ![image](docs/_static/m_refit.png)    | 20               |\n\n## Contributors \u2728\n\nThanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):\n\n<!-- prettier-ignore-start -->\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n<table>\n  <tbody>\n    <tr>\n      <td align=\"center\" valign=\"top\" width=\"14.28%\"><a href=\"https://github.com/34j\"><img src=\"https://avatars.githubusercontent.com/u/55338215?v=4?s=80\" width=\"80px;\" alt=\"34j\"/><br /><sub><b>34j</b></sub></a><br /><a href=\"https://github.com/34j/lightgbm-callbacks/commits?author=34j\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#ideas-34j\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a> <a href=\"https://github.com/34j/lightgbm-callbacks/commits?author=34j\" title=\"Documentation\">\ud83d\udcd6</a></td>\n    </tr>\n  </tbody>\n</table>\n\n<!-- markdownlint-restore -->\n<!-- prettier-ignore-end -->\n\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n<!-- prettier-ignore-end -->\n\nThis project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A collection of LightGBM callbacks.",
    "version": "0.1.16",
    "project_urls": {
        "Bug Tracker": "https://github.com/34j/lightgbm-callbacks/issues",
        "Changelog": "https://github.com/34j/lightgbm-callbacks/blob/main/CHANGELOG.md",
        "Documentation": "https://lightgbm-callbacks.readthedocs.io",
        "Homepage": "https://github.com/34j/lightgbm-callbacks",
        "Repository": "https://github.com/34j/lightgbm-callbacks"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7cff238cb10842c34f726774d3b08d1ce8716c387847a6a1c8917e0075c9e4ef",
                "md5": "206c7f1f175dc2bb1cbe571524f1c494",
                "sha256": "136c3d40805834ae1eefcd6e3468bf2f4964271fdb0f2e3499341a57d2cf8145"
            },
            "downloads": -1,
            "filename": "lightgbm_callbacks-0.1.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "206c7f1f175dc2bb1cbe571524f1c494",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 16112,
            "upload_time": "2024-11-15T01:18:55",
            "upload_time_iso_8601": "2024-11-15T01:18:55.714847Z",
            "url": "https://files.pythonhosted.org/packages/7c/ff/238cb10842c34f726774d3b08d1ce8716c387847a6a1c8917e0075c9e4ef/lightgbm_callbacks-0.1.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b40d9d3dccec4fca6ba3b5ab2a202519e34ee8f54c37da9393cab49afc8fcc3c",
                "md5": "bbc07a59ef7ee509e7f345db57c54e57",
                "sha256": "0bcb6d444dd9c396069d6e823f6c37ced400d4b8c7d84ea8904bd453b1f5c997"
            },
            "downloads": -1,
            "filename": "lightgbm_callbacks-0.1.16.tar.gz",
            "has_sig": false,
            "md5_digest": "bbc07a59ef7ee509e7f345db57c54e57",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 15785,
            "upload_time": "2024-11-15T01:18:57",
            "upload_time_iso_8601": "2024-11-15T01:18:57.472120Z",
            "url": "https://files.pythonhosted.org/packages/b4/0d/9d3dccec4fca6ba3b5ab2a202519e34ee8f54c37da9393cab49afc8fcc3c/lightgbm_callbacks-0.1.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-15 01:18:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "34j",
    "github_project": "lightgbm-callbacks",
    "github_fetch_exception": true,
    "lcname": "lightgbm-callbacks"
}
        
34j
Elapsed time: 0.82308s