lightgbm_embedding


Namelightgbm_embedding JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryFeature embeddings with LightGBM
upload_time2025-01-12 11:24:35
maintainerNone
docs_urlNone
authorAtilla Karaahmetoğlu
requires_python<3.14,>=3.9
licenseMIT
keywords lightgbm embeddings
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LightGBM Embeddings

Feature embeddings with LightGBM

## Installation

    pip install lightgbm-embedding

## Examples
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from lightgbm_embedding import LightgbmEmbedding

df = pd.read_csv(
    "https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv"
)
cols = df.columns[:-1]
target = df.columns[-1]
num_classes = df[target].nunique()

X_train, X_test = train_test_split(
    df, test_size=0.2, stratify=df[target], random_state=42
)

n_dim = 20
emb = LightgbmEmbedding(n_dim=n_dim)
emb.fit(X_train[cols], X_train[target])
X_train_embed = emb.transform(X_train[cols])
X_test_embed = emb.transform(X_test[cols])
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "lightgbm_embedding",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.9",
    "maintainer_email": null,
    "keywords": "lightgbm, embeddings",
    "author": "Atilla Karaahmeto\u011flu",
    "author_email": "atilla.karaahmetoglu@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3a/e5/133bb0de75c38062cf2074453d9826d86accbb3718f8434777993a0a6e1a/lightgbm_embedding-0.2.0.tar.gz",
    "platform": null,
    "description": "# LightGBM Embeddings\n\nFeature embeddings with LightGBM\n\n## Installation\n\n    pip install lightgbm-embedding\n\n## Examples\n```python\nimport pandas as pd\nfrom sklearn.model_selection import train_test_split\nfrom lightgbm_embedding import LightgbmEmbedding\n\ndf = pd.read_csv(\n    \"https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv\"\n)\ncols = df.columns[:-1]\ntarget = df.columns[-1]\nnum_classes = df[target].nunique()\n\nX_train, X_test = train_test_split(\n    df, test_size=0.2, stratify=df[target], random_state=42\n)\n\nn_dim = 20\nemb = LightgbmEmbedding(n_dim=n_dim)\nemb.fit(X_train[cols], X_train[target])\nX_train_embed = emb.transform(X_train[cols])\nX_test_embed = emb.transform(X_test[cols])\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Feature embeddings with LightGBM",
    "version": "0.2.0",
    "project_urls": null,
    "split_keywords": [
        "lightgbm",
        " embeddings"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1f60285e670ca9833512f6fbc0435e67d1bc4191b1020d802187bba2fda21fbb",
                "md5": "adca3fc33433fe34763be3b70322f7ea",
                "sha256": "28902d6a6db580d81487aefa26fa8cb1c51903d9e915ff52be10646eeddac530"
            },
            "downloads": -1,
            "filename": "lightgbm_embedding-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "adca3fc33433fe34763be3b70322f7ea",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.9",
            "size": 5222,
            "upload_time": "2025-01-12T11:24:34",
            "upload_time_iso_8601": "2025-01-12T11:24:34.717152Z",
            "url": "https://files.pythonhosted.org/packages/1f/60/285e670ca9833512f6fbc0435e67d1bc4191b1020d802187bba2fda21fbb/lightgbm_embedding-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ae5133bb0de75c38062cf2074453d9826d86accbb3718f8434777993a0a6e1a",
                "md5": "e933fa82004aa8759f596b1009770aa4",
                "sha256": "1b919821bc9190901d3ea294a45a609f19fc8db8d0ec6e7942295f0f33deee65"
            },
            "downloads": -1,
            "filename": "lightgbm_embedding-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e933fa82004aa8759f596b1009770aa4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.9",
            "size": 4043,
            "upload_time": "2025-01-12T11:24:35",
            "upload_time_iso_8601": "2025-01-12T11:24:35.855160Z",
            "url": "https://files.pythonhosted.org/packages/3a/e5/133bb0de75c38062cf2074453d9826d86accbb3718f8434777993a0a6e1a/lightgbm_embedding-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-12 11:24:35",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "lightgbm_embedding"
}
        
Elapsed time: 0.67566s