[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# LiMoE
Implementation of the "the first large-scale multimodal mixture of experts models." from the paper: "Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts". [CLICK HERE FOR THE PAPER LINK:](https://arxiv.org/abs/2206.02770)
## install
`pip install limoe`
## usage
```python
import torch
from limoe.main import LiMoE
# Text tokens (batch, sequence length)
text = torch.randint(0, 100, (1, 64))
# image (batch, channels, height, width)
image = torch.randn(1, 3, 224, 224)
# Create an instance of LiMoE with the specified parameters
model = LiMoE(
dim=64, # Dimension of the input and output tensors
depth=3, # Number of layers in the encoder
heads=8, # Number of attention heads
num_tokens=100, # Number of tokens in the vocabulary
seq_length=64, # Length of the input sequence
num_experts=4, # Number of experts in the mixture-of-experts layer
dim_head=64, # Dimension of each attention head
dropout=0.1, # Dropout rate
ff_mult=4, # Multiplier for the dimension of the feed-forward layer
patch_size=16, # Patch size
image_size=224, # Image size
channels=3, # Number of image channels
dense_encoder_depth=5,
)
# Pass the input tensor through the model and print the output
out = model(text, image)
# Print
print(out)
```
# License
MIT
## Citation
```bibtex
@misc{mustafa2022multimodal,
title={Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts},
author={Basil Mustafa and Carlos Riquelme and Joan Puigcerver and Rodolphe Jenatton and Neil Houlsby},
year={2022},
eprint={2206.02770},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/LIMoE",
"name": "limoe",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/bc/b5/47680b9cbcd915aa5ad3ce8c13f583f39233fb9a1d60f622a72b6cbc73f6/limoe-0.0.5.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# LiMoE\nImplementation of the \"the first large-scale multimodal mixture of experts models.\" from the paper: \"Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts\". [CLICK HERE FOR THE PAPER LINK:](https://arxiv.org/abs/2206.02770)\n\n\n## install\n`pip install limoe`\n\n## usage\n```python\nimport torch\n\nfrom limoe.main import LiMoE\n\n# Text tokens (batch, sequence length)\ntext = torch.randint(0, 100, (1, 64))\n\n# image (batch, channels, height, width)\nimage = torch.randn(1, 3, 224, 224)\n\n# Create an instance of LiMoE with the specified parameters\nmodel = LiMoE(\n dim=64, # Dimension of the input and output tensors\n depth=3, # Number of layers in the encoder\n heads=8, # Number of attention heads\n num_tokens=100, # Number of tokens in the vocabulary\n seq_length=64, # Length of the input sequence\n num_experts=4, # Number of experts in the mixture-of-experts layer\n dim_head=64, # Dimension of each attention head\n dropout=0.1, # Dropout rate\n ff_mult=4, # Multiplier for the dimension of the feed-forward layer\n patch_size=16, # Patch size\n image_size=224, # Image size\n channels=3, # Number of image channels\n dense_encoder_depth=5,\n)\n\n# Pass the input tensor through the model and print the output\nout = model(text, image)\n\n# Print\nprint(out)\n```\n\n# License\nMIT\n\n\n## Citation\n```bibtex\n@misc{mustafa2022multimodal,\n title={Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts}, \n author={Basil Mustafa and Carlos Riquelme and Joan Puigcerver and Rodolphe Jenatton and Neil Houlsby},\n year={2022},\n eprint={2206.02770},\n archivePrefix={arXiv},\n primaryClass={cs.CV}\n}\n```",
"bugtrack_url": null,
"license": "MIT",
"summary": "LiMoE - Pytorch",
"version": "0.0.5",
"project_urls": {
"Documentation": "https://github.com/kyegomez/LIMoE",
"Homepage": "https://github.com/kyegomez/LIMoE",
"Repository": "https://github.com/kyegomez/LIMoE"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e33782484dd4c4ef032ddc980b1ac46aad0e41db6df76a97021748029019d372",
"md5": "ac72a7cbfc934fb7d49818ef90380c2d",
"sha256": "01398132bdd480ba3488c6f949f514f0758f6ac78045a631fae073ca8f7a2266"
},
"downloads": -1,
"filename": "limoe-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ac72a7cbfc934fb7d49818ef90380c2d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 5419,
"upload_time": "2024-02-21T22:25:41",
"upload_time_iso_8601": "2024-02-21T22:25:41.166000Z",
"url": "https://files.pythonhosted.org/packages/e3/37/82484dd4c4ef032ddc980b1ac46aad0e41db6df76a97021748029019d372/limoe-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bcb547680b9cbcd915aa5ad3ce8c13f583f39233fb9a1d60f622a72b6cbc73f6",
"md5": "4fcd4cbe764b3c81b1e1b5a3b7efdc77",
"sha256": "50b55f08c5e5ac0c8acc25cc8fffec1cedc482ba655a5248c92aa4bb88835628"
},
"downloads": -1,
"filename": "limoe-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "4fcd4cbe764b3c81b1e1b5a3b7efdc77",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 5572,
"upload_time": "2024-02-21T22:25:42",
"upload_time_iso_8601": "2024-02-21T22:25:42.331560Z",
"url": "https://files.pythonhosted.org/packages/bc/b5/47680b9cbcd915aa5ad3ce8c13f583f39233fb9a1d60f622a72b6cbc73f6/limoe-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-21 22:25:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "LIMoE",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "swarms",
"specs": []
}
],
"lcname": "limoe"
}