linearmodels


Namelinearmodels JSON
Version 6.1 PyPI version JSON
download
home_pagehttp://github.com/bashtage/linearmodels
SummaryLinear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python
upload_time2024-09-24 09:46:18
maintainerNone
docs_urlNone
authorKevin Sheppard
requires_python>=3.9
licenseNCSA
keywords linear models regression instrumental variables iv panel fixed effects clustered heteroskedasticity endogeneity instruments statistics statistical inference econometrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # Linear Models

| Metric                     |                                                                                                                                                                                                                                                          |
| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Latest Release**         | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels)                                                                                                                                                      |
| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main)                        |
| **Coverage**               | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels)                                                                                                                       |
| **Code Quality**           | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
|                            | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main)                                                                                                 |
| **Citation**               | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672)                                                                                                                                                             |

Linear (regression) models for Python. Extends
[statsmodels](http://www.statsmodels.org) with Panel regression,
instrumental variable estimators, system estimators and models for
estimating asset prices:

-   **Panel models**:
    -   Fixed effects (maximum two-way)
    -   First difference regression
    -   Between estimator for panel data
    -   Pooled regression for panel data
    -   Fama-MacBeth estimation of panel models

-   **High-dimensional Regresssion**:
    -   Absorbing Least Squares

-   **Instrumental Variable estimators**
    -   Two-stage Least Squares
    -   Limited Information Maximum Likelihood
    -   k-class Estimators
    -   Generalized Method of Moments, also with continuously updating

-   **Factor Asset Pricing Models**:
    -   2- and 3-step estimation
    -   Time-series estimation
    -   GMM estimation

-   **System Regression**:
    -   Seemingly Unrelated Regression (SUR/SURE)
    -   Three-Stage Least Squares (3SLS)
    -   Generalized Method of Moments (GMM) System Estimation

Designed to work equally well with NumPy, Pandas or xarray data.

## Panel models

Like [statsmodels](http://www.statsmodels.org) to include, supports
formulas for specifying models. For example, the classic Grunfeld regression can be
specified

```python
import numpy as np
from statsmodels.datasets import grunfeld
data = grunfeld.load_pandas().data
data.year = data.year.astype(np.int64)
# MultiIndex, entity - time
data = data.set_index(['firm','year'])
from linearmodels import PanelOLS
mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
res = mod.fit(cov_type='clustered', cluster_entity=True)
```

Models can also be specified using the formula interface.

```python
from linearmodels import PanelOLS
mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
res = mod.fit(cov_type='clustered', cluster_entity=True)
```

The formula interface for `PanelOLS` supports the special values
`EntityEffects` and `TimeEffects` which add entity (fixed) and time
effects, respectively.

Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).

## Instrumental Variable Models

IV regression models can be similarly specified.

```python
import numpy as np
from linearmodels.iv import IV2SLS
from linearmodels.datasets import mroz
data = mroz.load()
mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
```

The expressions in the `[ ]` indicate endogenous regressors (before `~`)
and the instruments.

## Installing

The latest release can be installed using pip

```bash
pip install linearmodels
```

The main branch can be installed by cloning the repo and running setup

```bash
git clone https://github.com/bashtage/linearmodels
cd linearmodels
pip install .
```

## Documentation

[Stable Documentation](https://bashtage.github.io/linearmodels/) is
built on every tagged version using
[doctr](https://github.com/drdoctr/doctr).
[Development Documentation](https://bashtage.github.io/linearmodels/devel)
is automatically built on every successful build of main.

## Plan and status

Should eventually add some useful linear model estimators such as panel
regression. Currently only the single variable IV estimators are polished.

-   Linear Instrumental variable estimation - **complete**
-   Linear Panel model estimation - **complete**
-   Fama-MacBeth regression - **complete**
-   Linear Factor Asset Pricing - **complete**
-   System regression - **complete**
-   Linear IV Panel model estimation - _not started_
-   Dynamic Panel model estimation - _not started_

## Requirements

### Running

-   Python 3.9+
-   NumPy (1.22+)
-   SciPy (1.8+)
-   pandas (1.4+)
-   statsmodels (0.12+)
-   formulaic (1.0.0+)
-   xarray (0.16+, optional)
-   Cython (3.0.10+, optional)


### Testing

-   py.test

### Documentation

-   sphinx
-   sphinx-immaterial
-   nbsphinx
-   nbconvert
-   nbformat
-   ipython
-   jupyter

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/bashtage/linearmodels",
    "name": "linearmodels",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "linear models, regression, instrumental variables, IV, panel, fixed effects, clustered, heteroskedasticity, endogeneity, instruments, statistics, statistical inference, econometrics",
    "author": "Kevin Sheppard",
    "author_email": "kevin.k.sheppard@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5d/29/5832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40/linearmodels-6.1.tar.gz",
    "platform": null,
    "description": "# Linear Models\n\n| Metric                     |                                                                                                                                                                                                                                                          |\n| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n| **Latest Release**         | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels)                                                                                                                                                      |\n| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main)                        |\n| **Coverage**               | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels)                                                                                                                       |\n| **Code Quality**           | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |\n|                            | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main)                                                                                                 |\n| **Citation**               | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672)                                                                                                                                                             |\n\nLinear (regression) models for Python. Extends\n[statsmodels](http://www.statsmodels.org) with Panel regression,\ninstrumental variable estimators, system estimators and models for\nestimating asset prices:\n\n-   **Panel models**:\n    -   Fixed effects (maximum two-way)\n    -   First difference regression\n    -   Between estimator for panel data\n    -   Pooled regression for panel data\n    -   Fama-MacBeth estimation of panel models\n\n-   **High-dimensional Regresssion**:\n    -   Absorbing Least Squares\n\n-   **Instrumental Variable estimators**\n    -   Two-stage Least Squares\n    -   Limited Information Maximum Likelihood\n    -   k-class Estimators\n    -   Generalized Method of Moments, also with continuously updating\n\n-   **Factor Asset Pricing Models**:\n    -   2- and 3-step estimation\n    -   Time-series estimation\n    -   GMM estimation\n\n-   **System Regression**:\n    -   Seemingly Unrelated Regression (SUR/SURE)\n    -   Three-Stage Least Squares (3SLS)\n    -   Generalized Method of Moments (GMM) System Estimation\n\nDesigned to work equally well with NumPy, Pandas or xarray data.\n\n## Panel models\n\nLike [statsmodels](http://www.statsmodels.org) to include, supports\nformulas for specifying models. For example, the classic Grunfeld regression can be\nspecified\n\n```python\nimport numpy as np\nfrom statsmodels.datasets import grunfeld\ndata = grunfeld.load_pandas().data\ndata.year = data.year.astype(np.int64)\n# MultiIndex, entity - time\ndata = data.set_index(['firm','year'])\nfrom linearmodels import PanelOLS\nmod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)\nres = mod.fit(cov_type='clustered', cluster_entity=True)\n```\n\nModels can also be specified using the formula interface.\n\n```python\nfrom linearmodels import PanelOLS\nmod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)\nres = mod.fit(cov_type='clustered', cluster_entity=True)\n```\n\nThe formula interface for `PanelOLS` supports the special values\n`EntityEffects` and `TimeEffects` which add entity (fixed) and time\neffects, respectively.\n\nFormula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)\npackage which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).\n\n## Instrumental Variable Models\n\nIV regression models can be similarly specified.\n\n```python\nimport numpy as np\nfrom linearmodels.iv import IV2SLS\nfrom linearmodels.datasets import mroz\ndata = mroz.load()\nmod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)\n```\n\nThe expressions in the `[ ]` indicate endogenous regressors (before `~`)\nand the instruments.\n\n## Installing\n\nThe latest release can be installed using pip\n\n```bash\npip install linearmodels\n```\n\nThe main branch can be installed by cloning the repo and running setup\n\n```bash\ngit clone https://github.com/bashtage/linearmodels\ncd linearmodels\npip install .\n```\n\n## Documentation\n\n[Stable Documentation](https://bashtage.github.io/linearmodels/) is\nbuilt on every tagged version using\n[doctr](https://github.com/drdoctr/doctr).\n[Development Documentation](https://bashtage.github.io/linearmodels/devel)\nis automatically built on every successful build of main.\n\n## Plan and status\n\nShould eventually add some useful linear model estimators such as panel\nregression. Currently only the single variable IV estimators are polished.\n\n-   Linear Instrumental variable estimation - **complete**\n-   Linear Panel model estimation - **complete**\n-   Fama-MacBeth regression - **complete**\n-   Linear Factor Asset Pricing - **complete**\n-   System regression - **complete**\n-   Linear IV Panel model estimation - _not started_\n-   Dynamic Panel model estimation - _not started_\n\n## Requirements\n\n### Running\n\n-   Python 3.9+\n-   NumPy (1.22+)\n-   SciPy (1.8+)\n-   pandas (1.4+)\n-   statsmodels (0.12+)\n-   formulaic (1.0.0+)\n-   xarray (0.16+, optional)\n-   Cython (3.0.10+, optional)\n\n\n### Testing\n\n-   py.test\n\n### Documentation\n\n-   sphinx\n-   sphinx-immaterial\n-   nbsphinx\n-   nbconvert\n-   nbformat\n-   ipython\n-   jupyter\n",
    "bugtrack_url": null,
    "license": "NCSA",
    "summary": "Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python",
    "version": "6.1",
    "project_urls": {
        "Homepage": "http://github.com/bashtage/linearmodels"
    },
    "split_keywords": [
        "linear models",
        " regression",
        " instrumental variables",
        " iv",
        " panel",
        " fixed effects",
        " clustered",
        " heteroskedasticity",
        " endogeneity",
        " instruments",
        " statistics",
        " statistical inference",
        " econometrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd7ecbf9a22027f9bc8136c4ab9fe34e7b160103d8d0d2e09fd29125e9b6d4dd",
                "md5": "e04ddee676290af3625a62fca2cad148",
                "sha256": "c9ab6f960fbd3060bccd28a20d9d4e29acda09158c1577e930c8c862af51a4a7"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e04ddee676290af3625a62fca2cad148",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1666612,
            "upload_time": "2024-09-24T09:35:24",
            "upload_time_iso_8601": "2024-09-24T09:35:24.497934Z",
            "url": "https://files.pythonhosted.org/packages/fd/7e/cbf9a22027f9bc8136c4ab9fe34e7b160103d8d0d2e09fd29125e9b6d4dd/linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7e2eedf1ba569e5d7c25103f2ef1a67dd5a4f8bd125e6146d57a8cef1b938767",
                "md5": "c7e56f2ed97572e4f37f68044a460629",
                "sha256": "263e4d2bda42240a0e380a806296ca54bb5f1e10a293f81b8a2a142f7b6512d3"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "c7e56f2ed97572e4f37f68044a460629",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1661332,
            "upload_time": "2024-09-24T09:35:26",
            "upload_time_iso_8601": "2024-09-24T09:35:26.010070Z",
            "url": "https://files.pythonhosted.org/packages/7e/2e/edf1ba569e5d7c25103f2ef1a67dd5a4f8bd125e6146d57a8cef1b938767/linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "010268f9479b4875e149c2ddf927abe8efaba1978ca2e719ebe262143b4c7d6b",
                "md5": "7f350116858a4efa098c0103f2874abb",
                "sha256": "fc1a2b33b10b5f9844219feb4e21b509cbaa923b3acc5456881f25b1504cbce8"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "7f350116858a4efa098c0103f2874abb",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1675308,
            "upload_time": "2024-09-24T09:56:45",
            "upload_time_iso_8601": "2024-09-24T09:56:45.702840Z",
            "url": "https://files.pythonhosted.org/packages/01/02/68f9479b4875e149c2ddf927abe8efaba1978ca2e719ebe262143b4c7d6b/linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "86f490512573b35c98478e93d6d22e8b05d3371b259b6af7f4e75638b6372c48",
                "md5": "3c6935d16f7e78f59fc5de2f69b41e55",
                "sha256": "39b2445a4c75f8e5ce663d2219e5f34adeb110bccf40fd54c0b5106366fb0ab1"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3c6935d16f7e78f59fc5de2f69b41e55",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1682669,
            "upload_time": "2024-09-24T09:56:47",
            "upload_time_iso_8601": "2024-09-24T09:56:47.541349Z",
            "url": "https://files.pythonhosted.org/packages/86/f4/90512573b35c98478e93d6d22e8b05d3371b259b6af7f4e75638b6372c48/linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ed53bcb5f3220eaaa51b5e2cee5205d820ab6005aec9bf3a56168a71c9bf679",
                "md5": "59d17849929333578721a6e369135c0f",
                "sha256": "fe72fff0ce415727a5a56f3c30b68b2493f1453fe3ad994942177f8e99a44a6a"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl",
            "has_sig": false,
            "md5_digest": "59d17849929333578721a6e369135c0f",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1688062,
            "upload_time": "2024-09-24T09:56:48",
            "upload_time_iso_8601": "2024-09-24T09:56:48.841292Z",
            "url": "https://files.pythonhosted.org/packages/8e/d5/3bcb5f3220eaaa51b5e2cee5205d820ab6005aec9bf3a56168a71c9bf679/linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1173030e9b5c588fe859ef1aae83921883ef2f34be6abb694cfbfedbde3dc4b4",
                "md5": "7ec7b72dadc38ceb7e6450e8fe2a0604",
                "sha256": "e3b260dfdf8ba7f47d478d4cb37fb9743719166901e837f7686b014ab416e9ef"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "7ec7b72dadc38ceb7e6450e8fe2a0604",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9",
            "size": 1659289,
            "upload_time": "2024-09-24T09:36:14",
            "upload_time_iso_8601": "2024-09-24T09:36:14.783566Z",
            "url": "https://files.pythonhosted.org/packages/11/73/030e9b5c588fe859ef1aae83921883ef2f34be6abb694cfbfedbde3dc4b4/linearmodels-6.1-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f2b862297d76f848972085f1020650764fb676471193e6211ecad4b61ea51682",
                "md5": "d71b19fc473bbdb15cd05e19a3c6c87a",
                "sha256": "c31fc62766a088a91969ad4fedf5c95eb5176fee67d595178642a2ebdc8757ce"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d71b19fc473bbdb15cd05e19a3c6c87a",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1666520,
            "upload_time": "2024-09-24T09:35:56",
            "upload_time_iso_8601": "2024-09-24T09:35:56.935351Z",
            "url": "https://files.pythonhosted.org/packages/f2/b8/62297d76f848972085f1020650764fb676471193e6211ecad4b61ea51682/linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b22dfa7774f1e340655cbb26dc2dd09e6e4e1e989ee05cc43395ed5e9e6fc83e",
                "md5": "54203956fe2347bdbcf02e56e6be81ae",
                "sha256": "2d68d09deda6a88134c2a37f5f3d9c9da01e999e7ec0520736d73365f5f438cd"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "54203956fe2347bdbcf02e56e6be81ae",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1661163,
            "upload_time": "2024-09-24T09:35:58",
            "upload_time_iso_8601": "2024-09-24T09:35:58.176622Z",
            "url": "https://files.pythonhosted.org/packages/b2/2d/fa7774f1e340655cbb26dc2dd09e6e4e1e989ee05cc43395ed5e9e6fc83e/linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "19b7d3d276ba7c1228c28863d80f0853d89f253a7236d6fb1aa71474f5878ef5",
                "md5": "2411daf8cf0a2f615d4c54917bba6209",
                "sha256": "151d48882005843935bf42fe9bd3b6ba3043320319701176a1f49db04a3b015a"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "2411daf8cf0a2f615d4c54917bba6209",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1674685,
            "upload_time": "2024-09-24T09:57:24",
            "upload_time_iso_8601": "2024-09-24T09:57:24.455578Z",
            "url": "https://files.pythonhosted.org/packages/19/b7/d3d276ba7c1228c28863d80f0853d89f253a7236d6fb1aa71474f5878ef5/linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4e0aa3e622f4ac4d6f0d31d09912244b5c6789325ef4aa5daa4e521d06aff00c",
                "md5": "dd771161478e4d1cb8bf022c2f983ab8",
                "sha256": "2688c1f359171b9a54ae4f1c9f5aae9858f878fc40c6cb647a3a76bdccafd6a7"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "dd771161478e4d1cb8bf022c2f983ab8",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1681446,
            "upload_time": "2024-09-24T09:57:26",
            "upload_time_iso_8601": "2024-09-24T09:57:26.732189Z",
            "url": "https://files.pythonhosted.org/packages/4e/0a/a3e622f4ac4d6f0d31d09912244b5c6789325ef4aa5daa4e521d06aff00c/linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81dba4698094b04298f7200c078be9a8ca7d45685e191186611a17c04bdd2995",
                "md5": "01f7c64bc66164398ea6426e827a55aa",
                "sha256": "17822f49bbc02b4aea748c8be0fe86ac2bcd928a6f43566cd3a0d19cc61a1606"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl",
            "has_sig": false,
            "md5_digest": "01f7c64bc66164398ea6426e827a55aa",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1688046,
            "upload_time": "2024-09-24T09:57:28",
            "upload_time_iso_8601": "2024-09-24T09:57:28.220523Z",
            "url": "https://files.pythonhosted.org/packages/81/db/a4698094b04298f7200c078be9a8ca7d45685e191186611a17c04bdd2995/linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "240f0fb67ccbd48aea1e14cf7d24704c198fea14f08ddc9fa7c3e23ed0d6ea7e",
                "md5": "123ef06581c5d99fe7ebc4a92271a67d",
                "sha256": "89bb4fdfa4aecad4f743fc06f9014c702a4a98a7ec5ad005cbaa6798ffad8381"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "123ef06581c5d99fe7ebc4a92271a67d",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9",
            "size": 1659455,
            "upload_time": "2024-09-24T09:36:56",
            "upload_time_iso_8601": "2024-09-24T09:36:56.957096Z",
            "url": "https://files.pythonhosted.org/packages/24/0f/0fb67ccbd48aea1e14cf7d24704c198fea14f08ddc9fa7c3e23ed0d6ea7e/linearmodels-6.1-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "33c0c49ff24fde19c2d50997368d905b3777f5523e2700e2019f8b17cf9e03f8",
                "md5": "1d191403c1e785c4d107f9438f308ccb",
                "sha256": "39ef5f2a9280b6a11b4be073d860a1f2e0b4b7ee98a2fb07cfe903b5faa96e00"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1d191403c1e785c4d107f9438f308ccb",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1668550,
            "upload_time": "2024-09-24T09:39:55",
            "upload_time_iso_8601": "2024-09-24T09:39:55.638209Z",
            "url": "https://files.pythonhosted.org/packages/33/c0/c49ff24fde19c2d50997368d905b3777f5523e2700e2019f8b17cf9e03f8/linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b856153635a878fa4158a565e6f5e326e50951f3dc32fa084064eafd9e92a89a",
                "md5": "134fd967623fa51f6da34f294e378cce",
                "sha256": "6f872ad46571f8f10f4d37006a2561470c42f6bc0553b717bae4bb1233951ae1"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "134fd967623fa51f6da34f294e378cce",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1662731,
            "upload_time": "2024-09-24T09:39:57",
            "upload_time_iso_8601": "2024-09-24T09:39:57.885280Z",
            "url": "https://files.pythonhosted.org/packages/b8/56/153635a878fa4158a565e6f5e326e50951f3dc32fa084064eafd9e92a89a/linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "771163654bfcbd132edc88776f580f558d87de0e751d38884684b258dd99628c",
                "md5": "0ab565c49ba1e1dcb7fcf9f52978a5ec",
                "sha256": "061788d634991d1bccf5f62cb6f7abcea15cdb4e66a4b1861f13e6ba9915c4ab"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "0ab565c49ba1e1dcb7fcf9f52978a5ec",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1672009,
            "upload_time": "2024-09-24T09:58:12",
            "upload_time_iso_8601": "2024-09-24T09:58:12.308593Z",
            "url": "https://files.pythonhosted.org/packages/77/11/63654bfcbd132edc88776f580f558d87de0e751d38884684b258dd99628c/linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "387e68bccf0a3dd8441decde26a9db838e6ad924d38f48502a3c1f9f2ed0be9f",
                "md5": "bab9676555de39d5ad2ca2e5bf3a9eb4",
                "sha256": "04cee9532a1c3fa583dc906e0da575f43be6bb8b2078ed7a09282c0d47a7304b"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "bab9676555de39d5ad2ca2e5bf3a9eb4",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1679536,
            "upload_time": "2024-09-24T09:58:14",
            "upload_time_iso_8601": "2024-09-24T09:58:14.049994Z",
            "url": "https://files.pythonhosted.org/packages/38/7e/68bccf0a3dd8441decde26a9db838e6ad924d38f48502a3c1f9f2ed0be9f/linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ed1142ac4440f5b457ee690af562b0c0a28d3924b567ff468355412a3fed99f7",
                "md5": "a11c3c1f181896f9e989b5df9f4205ec",
                "sha256": "ce5f44b5c1ff4110c69f02f2a41afec2cd46ed5e135c7adfb929322d82369fca"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a11c3c1f181896f9e989b5df9f4205ec",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1685720,
            "upload_time": "2024-09-24T09:58:15",
            "upload_time_iso_8601": "2024-09-24T09:58:15.431752Z",
            "url": "https://files.pythonhosted.org/packages/ed/11/42ac4440f5b457ee690af562b0c0a28d3924b567ff468355412a3fed99f7/linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d145e115550ca9fb23d20a84d695b2835c848886a4ad0b305d90ec28b5a57e00",
                "md5": "3c7c5b207c4ec156f8fc569c8259410f",
                "sha256": "18b827f96db5c7406bbdfe00dab386385b93e8b8727a6cc033e725f53dbfa066"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "3c7c5b207c4ec156f8fc569c8259410f",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9",
            "size": 1660665,
            "upload_time": "2024-09-24T09:37:02",
            "upload_time_iso_8601": "2024-09-24T09:37:02.213988Z",
            "url": "https://files.pythonhosted.org/packages/d1/45/e115550ca9fb23d20a84d695b2835c848886a4ad0b305d90ec28b5a57e00/linearmodels-6.1-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "86907db827b3e8d1b82b07db9dfc75f007f71c68d72c64fc9b141fb46dbd2839",
                "md5": "1572aae602dae87c28576414c72dcf86",
                "sha256": "7a9e6f96ec3b048265befa38069c66a3a2a98612afddf62cd6a95026af445b9c"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1572aae602dae87c28576414c72dcf86",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1667459,
            "upload_time": "2024-09-24T09:36:34",
            "upload_time_iso_8601": "2024-09-24T09:36:34.985807Z",
            "url": "https://files.pythonhosted.org/packages/86/90/7db827b3e8d1b82b07db9dfc75f007f71c68d72c64fc9b141fb46dbd2839/linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "40b6a0584af03885bd6cc57d483b7573f72ee152d7d1717f29227c73e3db4233",
                "md5": "858a4495714161ab3fa8dbedefe540ca",
                "sha256": "79f1bb320ff6a5ac0fc350989d5818a7cd1f888975b04f38a8c10b90b194d718"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "858a4495714161ab3fa8dbedefe540ca",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1661617,
            "upload_time": "2024-09-24T09:36:36",
            "upload_time_iso_8601": "2024-09-24T09:36:36.114213Z",
            "url": "https://files.pythonhosted.org/packages/40/b6/a0584af03885bd6cc57d483b7573f72ee152d7d1717f29227c73e3db4233/linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e39f9fbf7384b39c69f05f5045e1f346fa20ad147328da4f53549eb892c8f858",
                "md5": "6eb22aebc6e784f3a9690cb42d7e204f",
                "sha256": "08f612bd0c2968beae4016a79b8a802bd91fcafb7149bb918bffca0d766ea46a"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "6eb22aebc6e784f3a9690cb42d7e204f",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1670883,
            "upload_time": "2024-09-24T09:57:28",
            "upload_time_iso_8601": "2024-09-24T09:57:28.702872Z",
            "url": "https://files.pythonhosted.org/packages/e3/9f/9fbf7384b39c69f05f5045e1f346fa20ad147328da4f53549eb892c8f858/linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46d094525a3c2b84213324bd4f3165e42a2bc532926ba9ecd30846817d80a610",
                "md5": "926378c8b8ab7ee542f679af5605af0b",
                "sha256": "6e27671f6a25bbf81a731630e6a66c3befc955ecc82e402f08b067d61a1ebf2a"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "926378c8b8ab7ee542f679af5605af0b",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1678752,
            "upload_time": "2024-09-24T09:57:31",
            "upload_time_iso_8601": "2024-09-24T09:57:31.016772Z",
            "url": "https://files.pythonhosted.org/packages/46/d0/94525a3c2b84213324bd4f3165e42a2bc532926ba9ecd30846817d80a610/linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "77ec6d3e9c1580074e57f5c26375aafae68f5248bc82fce0451057f965cf38e9",
                "md5": "3638b70dac754b64d5c44eb2d2c2927b",
                "sha256": "f020b98e852006ab2731b5508c4190017075197cf8563f0cd81838edf4b05e7d"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3638b70dac754b64d5c44eb2d2c2927b",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1685181,
            "upload_time": "2024-09-24T09:57:32",
            "upload_time_iso_8601": "2024-09-24T09:57:32.636752Z",
            "url": "https://files.pythonhosted.org/packages/77/ec/6d3e9c1580074e57f5c26375aafae68f5248bc82fce0451057f965cf38e9/linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a164f3074341a13b51a1357186abd4d29969765d2112aff4ff28cfea44e6fe21",
                "md5": "f010178eec90d8a04918fa926f345d9a",
                "sha256": "628be681f59a07da0848174974cc0d331fc5daf2367d37f27aec94b7e8e16e70"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp313-cp313-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "f010178eec90d8a04918fa926f345d9a",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9",
            "size": 1660363,
            "upload_time": "2024-09-24T09:40:08",
            "upload_time_iso_8601": "2024-09-24T09:40:08.607690Z",
            "url": "https://files.pythonhosted.org/packages/a1/64/f3074341a13b51a1357186abd4d29969765d2112aff4ff28cfea44e6fe21/linearmodels-6.1-cp313-cp313-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0069659dfade0ba7cd6bbae08488ae4f060f192c987626196b4970bf58829f07",
                "md5": "62e5bc4b914781276d15c6244e5f0eb7",
                "sha256": "d9db86e757dfcd03e0c95a654fba72a7f5c9b42e1b7fe73dd240fc929aefa854"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl",
            "has_sig": false,
            "md5_digest": "62e5bc4b914781276d15c6244e5f0eb7",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 1667216,
            "upload_time": "2024-09-24T09:37:15",
            "upload_time_iso_8601": "2024-09-24T09:37:15.213624Z",
            "url": "https://files.pythonhosted.org/packages/00/69/659dfade0ba7cd6bbae08488ae4f060f192c987626196b4970bf58829f07/linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "61ecb37b80798f723d9279b2b0e2ee6083ae76c4e14acc5a227838761915ae4a",
                "md5": "42205d24c1cb11a3d910f56a5ba1f6d6",
                "sha256": "8eb8f2290608bd8c8e7965dec22399cf498a38a70692bb5d5a5b0dbddca4658e"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "42205d24c1cb11a3d910f56a5ba1f6d6",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 1661889,
            "upload_time": "2024-09-24T09:37:16",
            "upload_time_iso_8601": "2024-09-24T09:37:16.913393Z",
            "url": "https://files.pythonhosted.org/packages/61/ec/b37b80798f723d9279b2b0e2ee6083ae76c4e14acc5a227838761915ae4a/linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "275f9d247b12b2a90396505d77d3558d4308239ddaa7eba8e926c0cd2f0e2ef8",
                "md5": "ef91084f9107fa638dcb589b97506b90",
                "sha256": "6f5a430361707ba79fb91fd4bf5acd85c7d4b41f0c964747d864ff3409bbfff6"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "ef91084f9107fa638dcb589b97506b90",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 1675632,
            "upload_time": "2024-09-24T09:48:40",
            "upload_time_iso_8601": "2024-09-24T09:48:40.458725Z",
            "url": "https://files.pythonhosted.org/packages/27/5f/9d247b12b2a90396505d77d3558d4308239ddaa7eba8e926c0cd2f0e2ef8/linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6ac8308a5b8589027acaa90bba9da5311deb8ef258cbb57e8dd9b79360a3fe47",
                "md5": "bbe66eb40542d861a05beeb06405b674",
                "sha256": "5d81a96566087c61955db44e402e181484582300f7a05b3e27d65a87538ce0f3"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "bbe66eb40542d861a05beeb06405b674",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 1683082,
            "upload_time": "2024-09-24T09:48:41",
            "upload_time_iso_8601": "2024-09-24T09:48:41.700338Z",
            "url": "https://files.pythonhosted.org/packages/6a/c8/308a5b8589027acaa90bba9da5311deb8ef258cbb57e8dd9b79360a3fe47/linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "efeb5cfba10824d4e55a167f664d232b13ec15483ff34c3ca6f035d5f989da5a",
                "md5": "511c2e8d6cbe5a331e05a1e238be82de",
                "sha256": "c342b0a6aa5819901cde646f4d6a9da3387aad40e49bed792fcb5e57b6624246"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "511c2e8d6cbe5a331e05a1e238be82de",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 1659805,
            "upload_time": "2024-09-24T09:41:36",
            "upload_time_iso_8601": "2024-09-24T09:41:36.174836Z",
            "url": "https://files.pythonhosted.org/packages/ef/eb/5cfba10824d4e55a167f664d232b13ec15483ff34c3ca6f035d5f989da5a/linearmodels-6.1-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d295832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40",
                "md5": "ab5536239cb968848eadfe797b67bf4c",
                "sha256": "74ead48a054bc1b3ebec8e8d7187f17504058891b70c2e090372b4759eeb3e89"
            },
            "downloads": -1,
            "filename": "linearmodels-6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ab5536239cb968848eadfe797b67bf4c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1828416,
            "upload_time": "2024-09-24T09:46:18",
            "upload_time_iso_8601": "2024-09-24T09:46:18.962233Z",
            "url": "https://files.pythonhosted.org/packages/5d/29/5832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40/linearmodels-6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-24 09:46:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bashtage",
    "github_project": "linearmodels",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "linearmodels"
}
        
Elapsed time: 0.55506s