# Linear Models
| Metric | |
| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
Linear (regression) models for Python. Extends
[statsmodels](http://www.statsmodels.org) with Panel regression,
instrumental variable estimators, system estimators and models for
estimating asset prices:
- **Panel models**:
- Fixed effects (maximum two-way)
- First difference regression
- Between estimator for panel data
- Pooled regression for panel data
- Fama-MacBeth estimation of panel models
- **High-dimensional Regresssion**:
- Absorbing Least Squares
- **Instrumental Variable estimators**
- Two-stage Least Squares
- Limited Information Maximum Likelihood
- k-class Estimators
- Generalized Method of Moments, also with continuously updating
- **Factor Asset Pricing Models**:
- 2- and 3-step estimation
- Time-series estimation
- GMM estimation
- **System Regression**:
- Seemingly Unrelated Regression (SUR/SURE)
- Three-Stage Least Squares (3SLS)
- Generalized Method of Moments (GMM) System Estimation
Designed to work equally well with NumPy, Pandas or xarray data.
## Panel models
Like [statsmodels](http://www.statsmodels.org) to include, supports
formulas for specifying models. For example, the classic Grunfeld regression can be
specified
```python
import numpy as np
from statsmodels.datasets import grunfeld
data = grunfeld.load_pandas().data
data.year = data.year.astype(np.int64)
# MultiIndex, entity - time
data = data.set_index(['firm','year'])
from linearmodels import PanelOLS
mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
res = mod.fit(cov_type='clustered', cluster_entity=True)
```
Models can also be specified using the formula interface.
```python
from linearmodels import PanelOLS
mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
res = mod.fit(cov_type='clustered', cluster_entity=True)
```
The formula interface for `PanelOLS` supports the special values
`EntityEffects` and `TimeEffects` which add entity (fixed) and time
effects, respectively.
Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
## Instrumental Variable Models
IV regression models can be similarly specified.
```python
import numpy as np
from linearmodels.iv import IV2SLS
from linearmodels.datasets import mroz
data = mroz.load()
mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
```
The expressions in the `[ ]` indicate endogenous regressors (before `~`)
and the instruments.
## Installing
The latest release can be installed using pip
```bash
pip install linearmodels
```
The main branch can be installed by cloning the repo and running setup
```bash
git clone https://github.com/bashtage/linearmodels
cd linearmodels
pip install .
```
## Documentation
[Stable Documentation](https://bashtage.github.io/linearmodels/) is
built on every tagged version using
[doctr](https://github.com/drdoctr/doctr).
[Development Documentation](https://bashtage.github.io/linearmodels/devel)
is automatically built on every successful build of main.
## Plan and status
Should eventually add some useful linear model estimators such as panel
regression. Currently only the single variable IV estimators are polished.
- Linear Instrumental variable estimation - **complete**
- Linear Panel model estimation - **complete**
- Fama-MacBeth regression - **complete**
- Linear Factor Asset Pricing - **complete**
- System regression - **complete**
- Linear IV Panel model estimation - _not started_
- Dynamic Panel model estimation - _not started_
## Requirements
### Running
- Python 3.9+
- NumPy (1.22+)
- SciPy (1.8+)
- pandas (1.4+)
- statsmodels (0.12+)
- formulaic (1.0.0+)
- xarray (0.16+, optional)
- Cython (3.0.10+, optional)
### Testing
- py.test
### Documentation
- sphinx
- sphinx-immaterial
- nbsphinx
- nbconvert
- nbformat
- ipython
- jupyter
Raw data
{
"_id": null,
"home_page": "http://github.com/bashtage/linearmodels",
"name": "linearmodels",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "linear models, regression, instrumental variables, IV, panel, fixed effects, clustered, heteroskedasticity, endogeneity, instruments, statistics, statistical inference, econometrics",
"author": "Kevin Sheppard",
"author_email": "kevin.k.sheppard@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5d/29/5832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40/linearmodels-6.1.tar.gz",
"platform": null,
"description": "# Linear Models\n\n| Metric | |\n| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |\n| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |\n| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |\n| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |\n| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |\n| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |\n\nLinear (regression) models for Python. Extends\n[statsmodels](http://www.statsmodels.org) with Panel regression,\ninstrumental variable estimators, system estimators and models for\nestimating asset prices:\n\n- **Panel models**:\n - Fixed effects (maximum two-way)\n - First difference regression\n - Between estimator for panel data\n - Pooled regression for panel data\n - Fama-MacBeth estimation of panel models\n\n- **High-dimensional Regresssion**:\n - Absorbing Least Squares\n\n- **Instrumental Variable estimators**\n - Two-stage Least Squares\n - Limited Information Maximum Likelihood\n - k-class Estimators\n - Generalized Method of Moments, also with continuously updating\n\n- **Factor Asset Pricing Models**:\n - 2- and 3-step estimation\n - Time-series estimation\n - GMM estimation\n\n- **System Regression**:\n - Seemingly Unrelated Regression (SUR/SURE)\n - Three-Stage Least Squares (3SLS)\n - Generalized Method of Moments (GMM) System Estimation\n\nDesigned to work equally well with NumPy, Pandas or xarray data.\n\n## Panel models\n\nLike [statsmodels](http://www.statsmodels.org) to include, supports\nformulas for specifying models. For example, the classic Grunfeld regression can be\nspecified\n\n```python\nimport numpy as np\nfrom statsmodels.datasets import grunfeld\ndata = grunfeld.load_pandas().data\ndata.year = data.year.astype(np.int64)\n# MultiIndex, entity - time\ndata = data.set_index(['firm','year'])\nfrom linearmodels import PanelOLS\nmod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)\nres = mod.fit(cov_type='clustered', cluster_entity=True)\n```\n\nModels can also be specified using the formula interface.\n\n```python\nfrom linearmodels import PanelOLS\nmod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)\nres = mod.fit(cov_type='clustered', cluster_entity=True)\n```\n\nThe formula interface for `PanelOLS` supports the special values\n`EntityEffects` and `TimeEffects` which add entity (fixed) and time\neffects, respectively.\n\nFormula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)\npackage which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).\n\n## Instrumental Variable Models\n\nIV regression models can be similarly specified.\n\n```python\nimport numpy as np\nfrom linearmodels.iv import IV2SLS\nfrom linearmodels.datasets import mroz\ndata = mroz.load()\nmod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)\n```\n\nThe expressions in the `[ ]` indicate endogenous regressors (before `~`)\nand the instruments.\n\n## Installing\n\nThe latest release can be installed using pip\n\n```bash\npip install linearmodels\n```\n\nThe main branch can be installed by cloning the repo and running setup\n\n```bash\ngit clone https://github.com/bashtage/linearmodels\ncd linearmodels\npip install .\n```\n\n## Documentation\n\n[Stable Documentation](https://bashtage.github.io/linearmodels/) is\nbuilt on every tagged version using\n[doctr](https://github.com/drdoctr/doctr).\n[Development Documentation](https://bashtage.github.io/linearmodels/devel)\nis automatically built on every successful build of main.\n\n## Plan and status\n\nShould eventually add some useful linear model estimators such as panel\nregression. Currently only the single variable IV estimators are polished.\n\n- Linear Instrumental variable estimation - **complete**\n- Linear Panel model estimation - **complete**\n- Fama-MacBeth regression - **complete**\n- Linear Factor Asset Pricing - **complete**\n- System regression - **complete**\n- Linear IV Panel model estimation - _not started_\n- Dynamic Panel model estimation - _not started_\n\n## Requirements\n\n### Running\n\n- Python 3.9+\n- NumPy (1.22+)\n- SciPy (1.8+)\n- pandas (1.4+)\n- statsmodels (0.12+)\n- formulaic (1.0.0+)\n- xarray (0.16+, optional)\n- Cython (3.0.10+, optional)\n\n\n### Testing\n\n- py.test\n\n### Documentation\n\n- sphinx\n- sphinx-immaterial\n- nbsphinx\n- nbconvert\n- nbformat\n- ipython\n- jupyter\n",
"bugtrack_url": null,
"license": "NCSA",
"summary": "Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python",
"version": "6.1",
"project_urls": {
"Homepage": "http://github.com/bashtage/linearmodels"
},
"split_keywords": [
"linear models",
" regression",
" instrumental variables",
" iv",
" panel",
" fixed effects",
" clustered",
" heteroskedasticity",
" endogeneity",
" instruments",
" statistics",
" statistical inference",
" econometrics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fd7ecbf9a22027f9bc8136c4ab9fe34e7b160103d8d0d2e09fd29125e9b6d4dd",
"md5": "e04ddee676290af3625a62fca2cad148",
"sha256": "c9ab6f960fbd3060bccd28a20d9d4e29acda09158c1577e930c8c862af51a4a7"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "e04ddee676290af3625a62fca2cad148",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1666612,
"upload_time": "2024-09-24T09:35:24",
"upload_time_iso_8601": "2024-09-24T09:35:24.497934Z",
"url": "https://files.pythonhosted.org/packages/fd/7e/cbf9a22027f9bc8136c4ab9fe34e7b160103d8d0d2e09fd29125e9b6d4dd/linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7e2eedf1ba569e5d7c25103f2ef1a67dd5a4f8bd125e6146d57a8cef1b938767",
"md5": "c7e56f2ed97572e4f37f68044a460629",
"sha256": "263e4d2bda42240a0e380a806296ca54bb5f1e10a293f81b8a2a142f7b6512d3"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "c7e56f2ed97572e4f37f68044a460629",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1661332,
"upload_time": "2024-09-24T09:35:26",
"upload_time_iso_8601": "2024-09-24T09:35:26.010070Z",
"url": "https://files.pythonhosted.org/packages/7e/2e/edf1ba569e5d7c25103f2ef1a67dd5a4f8bd125e6146d57a8cef1b938767/linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "010268f9479b4875e149c2ddf927abe8efaba1978ca2e719ebe262143b4c7d6b",
"md5": "7f350116858a4efa098c0103f2874abb",
"sha256": "fc1a2b33b10b5f9844219feb4e21b509cbaa923b3acc5456881f25b1504cbce8"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "7f350116858a4efa098c0103f2874abb",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1675308,
"upload_time": "2024-09-24T09:56:45",
"upload_time_iso_8601": "2024-09-24T09:56:45.702840Z",
"url": "https://files.pythonhosted.org/packages/01/02/68f9479b4875e149c2ddf927abe8efaba1978ca2e719ebe262143b4c7d6b/linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "86f490512573b35c98478e93d6d22e8b05d3371b259b6af7f4e75638b6372c48",
"md5": "3c6935d16f7e78f59fc5de2f69b41e55",
"sha256": "39b2445a4c75f8e5ce663d2219e5f34adeb110bccf40fd54c0b5106366fb0ab1"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3c6935d16f7e78f59fc5de2f69b41e55",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1682669,
"upload_time": "2024-09-24T09:56:47",
"upload_time_iso_8601": "2024-09-24T09:56:47.541349Z",
"url": "https://files.pythonhosted.org/packages/86/f4/90512573b35c98478e93d6d22e8b05d3371b259b6af7f4e75638b6372c48/linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8ed53bcb5f3220eaaa51b5e2cee5205d820ab6005aec9bf3a56168a71c9bf679",
"md5": "59d17849929333578721a6e369135c0f",
"sha256": "fe72fff0ce415727a5a56f3c30b68b2493f1453fe3ad994942177f8e99a44a6a"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "59d17849929333578721a6e369135c0f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1688062,
"upload_time": "2024-09-24T09:56:48",
"upload_time_iso_8601": "2024-09-24T09:56:48.841292Z",
"url": "https://files.pythonhosted.org/packages/8e/d5/3bcb5f3220eaaa51b5e2cee5205d820ab6005aec9bf3a56168a71c9bf679/linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1173030e9b5c588fe859ef1aae83921883ef2f34be6abb694cfbfedbde3dc4b4",
"md5": "7ec7b72dadc38ceb7e6450e8fe2a0604",
"sha256": "e3b260dfdf8ba7f47d478d4cb37fb9743719166901e837f7686b014ab416e9ef"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "7ec7b72dadc38ceb7e6450e8fe2a0604",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1659289,
"upload_time": "2024-09-24T09:36:14",
"upload_time_iso_8601": "2024-09-24T09:36:14.783566Z",
"url": "https://files.pythonhosted.org/packages/11/73/030e9b5c588fe859ef1aae83921883ef2f34be6abb694cfbfedbde3dc4b4/linearmodels-6.1-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f2b862297d76f848972085f1020650764fb676471193e6211ecad4b61ea51682",
"md5": "d71b19fc473bbdb15cd05e19a3c6c87a",
"sha256": "c31fc62766a088a91969ad4fedf5c95eb5176fee67d595178642a2ebdc8757ce"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "d71b19fc473bbdb15cd05e19a3c6c87a",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1666520,
"upload_time": "2024-09-24T09:35:56",
"upload_time_iso_8601": "2024-09-24T09:35:56.935351Z",
"url": "https://files.pythonhosted.org/packages/f2/b8/62297d76f848972085f1020650764fb676471193e6211ecad4b61ea51682/linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b22dfa7774f1e340655cbb26dc2dd09e6e4e1e989ee05cc43395ed5e9e6fc83e",
"md5": "54203956fe2347bdbcf02e56e6be81ae",
"sha256": "2d68d09deda6a88134c2a37f5f3d9c9da01e999e7ec0520736d73365f5f438cd"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "54203956fe2347bdbcf02e56e6be81ae",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1661163,
"upload_time": "2024-09-24T09:35:58",
"upload_time_iso_8601": "2024-09-24T09:35:58.176622Z",
"url": "https://files.pythonhosted.org/packages/b2/2d/fa7774f1e340655cbb26dc2dd09e6e4e1e989ee05cc43395ed5e9e6fc83e/linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "19b7d3d276ba7c1228c28863d80f0853d89f253a7236d6fb1aa71474f5878ef5",
"md5": "2411daf8cf0a2f615d4c54917bba6209",
"sha256": "151d48882005843935bf42fe9bd3b6ba3043320319701176a1f49db04a3b015a"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "2411daf8cf0a2f615d4c54917bba6209",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1674685,
"upload_time": "2024-09-24T09:57:24",
"upload_time_iso_8601": "2024-09-24T09:57:24.455578Z",
"url": "https://files.pythonhosted.org/packages/19/b7/d3d276ba7c1228c28863d80f0853d89f253a7236d6fb1aa71474f5878ef5/linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4e0aa3e622f4ac4d6f0d31d09912244b5c6789325ef4aa5daa4e521d06aff00c",
"md5": "dd771161478e4d1cb8bf022c2f983ab8",
"sha256": "2688c1f359171b9a54ae4f1c9f5aae9858f878fc40c6cb647a3a76bdccafd6a7"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "dd771161478e4d1cb8bf022c2f983ab8",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1681446,
"upload_time": "2024-09-24T09:57:26",
"upload_time_iso_8601": "2024-09-24T09:57:26.732189Z",
"url": "https://files.pythonhosted.org/packages/4e/0a/a3e622f4ac4d6f0d31d09912244b5c6789325ef4aa5daa4e521d06aff00c/linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81dba4698094b04298f7200c078be9a8ca7d45685e191186611a17c04bdd2995",
"md5": "01f7c64bc66164398ea6426e827a55aa",
"sha256": "17822f49bbc02b4aea748c8be0fe86ac2bcd928a6f43566cd3a0d19cc61a1606"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "01f7c64bc66164398ea6426e827a55aa",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1688046,
"upload_time": "2024-09-24T09:57:28",
"upload_time_iso_8601": "2024-09-24T09:57:28.220523Z",
"url": "https://files.pythonhosted.org/packages/81/db/a4698094b04298f7200c078be9a8ca7d45685e191186611a17c04bdd2995/linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "240f0fb67ccbd48aea1e14cf7d24704c198fea14f08ddc9fa7c3e23ed0d6ea7e",
"md5": "123ef06581c5d99fe7ebc4a92271a67d",
"sha256": "89bb4fdfa4aecad4f743fc06f9014c702a4a98a7ec5ad005cbaa6798ffad8381"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "123ef06581c5d99fe7ebc4a92271a67d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1659455,
"upload_time": "2024-09-24T09:36:56",
"upload_time_iso_8601": "2024-09-24T09:36:56.957096Z",
"url": "https://files.pythonhosted.org/packages/24/0f/0fb67ccbd48aea1e14cf7d24704c198fea14f08ddc9fa7c3e23ed0d6ea7e/linearmodels-6.1-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "33c0c49ff24fde19c2d50997368d905b3777f5523e2700e2019f8b17cf9e03f8",
"md5": "1d191403c1e785c4d107f9438f308ccb",
"sha256": "39ef5f2a9280b6a11b4be073d860a1f2e0b4b7ee98a2fb07cfe903b5faa96e00"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "1d191403c1e785c4d107f9438f308ccb",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1668550,
"upload_time": "2024-09-24T09:39:55",
"upload_time_iso_8601": "2024-09-24T09:39:55.638209Z",
"url": "https://files.pythonhosted.org/packages/33/c0/c49ff24fde19c2d50997368d905b3777f5523e2700e2019f8b17cf9e03f8/linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b856153635a878fa4158a565e6f5e326e50951f3dc32fa084064eafd9e92a89a",
"md5": "134fd967623fa51f6da34f294e378cce",
"sha256": "6f872ad46571f8f10f4d37006a2561470c42f6bc0553b717bae4bb1233951ae1"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "134fd967623fa51f6da34f294e378cce",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1662731,
"upload_time": "2024-09-24T09:39:57",
"upload_time_iso_8601": "2024-09-24T09:39:57.885280Z",
"url": "https://files.pythonhosted.org/packages/b8/56/153635a878fa4158a565e6f5e326e50951f3dc32fa084064eafd9e92a89a/linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "771163654bfcbd132edc88776f580f558d87de0e751d38884684b258dd99628c",
"md5": "0ab565c49ba1e1dcb7fcf9f52978a5ec",
"sha256": "061788d634991d1bccf5f62cb6f7abcea15cdb4e66a4b1861f13e6ba9915c4ab"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "0ab565c49ba1e1dcb7fcf9f52978a5ec",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1672009,
"upload_time": "2024-09-24T09:58:12",
"upload_time_iso_8601": "2024-09-24T09:58:12.308593Z",
"url": "https://files.pythonhosted.org/packages/77/11/63654bfcbd132edc88776f580f558d87de0e751d38884684b258dd99628c/linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "387e68bccf0a3dd8441decde26a9db838e6ad924d38f48502a3c1f9f2ed0be9f",
"md5": "bab9676555de39d5ad2ca2e5bf3a9eb4",
"sha256": "04cee9532a1c3fa583dc906e0da575f43be6bb8b2078ed7a09282c0d47a7304b"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "bab9676555de39d5ad2ca2e5bf3a9eb4",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1679536,
"upload_time": "2024-09-24T09:58:14",
"upload_time_iso_8601": "2024-09-24T09:58:14.049994Z",
"url": "https://files.pythonhosted.org/packages/38/7e/68bccf0a3dd8441decde26a9db838e6ad924d38f48502a3c1f9f2ed0be9f/linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ed1142ac4440f5b457ee690af562b0c0a28d3924b567ff468355412a3fed99f7",
"md5": "a11c3c1f181896f9e989b5df9f4205ec",
"sha256": "ce5f44b5c1ff4110c69f02f2a41afec2cd46ed5e135c7adfb929322d82369fca"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "a11c3c1f181896f9e989b5df9f4205ec",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1685720,
"upload_time": "2024-09-24T09:58:15",
"upload_time_iso_8601": "2024-09-24T09:58:15.431752Z",
"url": "https://files.pythonhosted.org/packages/ed/11/42ac4440f5b457ee690af562b0c0a28d3924b567ff468355412a3fed99f7/linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d145e115550ca9fb23d20a84d695b2835c848886a4ad0b305d90ec28b5a57e00",
"md5": "3c7c5b207c4ec156f8fc569c8259410f",
"sha256": "18b827f96db5c7406bbdfe00dab386385b93e8b8727a6cc033e725f53dbfa066"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "3c7c5b207c4ec156f8fc569c8259410f",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1660665,
"upload_time": "2024-09-24T09:37:02",
"upload_time_iso_8601": "2024-09-24T09:37:02.213988Z",
"url": "https://files.pythonhosted.org/packages/d1/45/e115550ca9fb23d20a84d695b2835c848886a4ad0b305d90ec28b5a57e00/linearmodels-6.1-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "86907db827b3e8d1b82b07db9dfc75f007f71c68d72c64fc9b141fb46dbd2839",
"md5": "1572aae602dae87c28576414c72dcf86",
"sha256": "7a9e6f96ec3b048265befa38069c66a3a2a98612afddf62cd6a95026af445b9c"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "1572aae602dae87c28576414c72dcf86",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1667459,
"upload_time": "2024-09-24T09:36:34",
"upload_time_iso_8601": "2024-09-24T09:36:34.985807Z",
"url": "https://files.pythonhosted.org/packages/86/90/7db827b3e8d1b82b07db9dfc75f007f71c68d72c64fc9b141fb46dbd2839/linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "40b6a0584af03885bd6cc57d483b7573f72ee152d7d1717f29227c73e3db4233",
"md5": "858a4495714161ab3fa8dbedefe540ca",
"sha256": "79f1bb320ff6a5ac0fc350989d5818a7cd1f888975b04f38a8c10b90b194d718"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "858a4495714161ab3fa8dbedefe540ca",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1661617,
"upload_time": "2024-09-24T09:36:36",
"upload_time_iso_8601": "2024-09-24T09:36:36.114213Z",
"url": "https://files.pythonhosted.org/packages/40/b6/a0584af03885bd6cc57d483b7573f72ee152d7d1717f29227c73e3db4233/linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e39f9fbf7384b39c69f05f5045e1f346fa20ad147328da4f53549eb892c8f858",
"md5": "6eb22aebc6e784f3a9690cb42d7e204f",
"sha256": "08f612bd0c2968beae4016a79b8a802bd91fcafb7149bb918bffca0d766ea46a"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "6eb22aebc6e784f3a9690cb42d7e204f",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1670883,
"upload_time": "2024-09-24T09:57:28",
"upload_time_iso_8601": "2024-09-24T09:57:28.702872Z",
"url": "https://files.pythonhosted.org/packages/e3/9f/9fbf7384b39c69f05f5045e1f346fa20ad147328da4f53549eb892c8f858/linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "46d094525a3c2b84213324bd4f3165e42a2bc532926ba9ecd30846817d80a610",
"md5": "926378c8b8ab7ee542f679af5605af0b",
"sha256": "6e27671f6a25bbf81a731630e6a66c3befc955ecc82e402f08b067d61a1ebf2a"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "926378c8b8ab7ee542f679af5605af0b",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1678752,
"upload_time": "2024-09-24T09:57:31",
"upload_time_iso_8601": "2024-09-24T09:57:31.016772Z",
"url": "https://files.pythonhosted.org/packages/46/d0/94525a3c2b84213324bd4f3165e42a2bc532926ba9ecd30846817d80a610/linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "77ec6d3e9c1580074e57f5c26375aafae68f5248bc82fce0451057f965cf38e9",
"md5": "3638b70dac754b64d5c44eb2d2c2927b",
"sha256": "f020b98e852006ab2731b5508c4190017075197cf8563f0cd81838edf4b05e7d"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "3638b70dac754b64d5c44eb2d2c2927b",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1685181,
"upload_time": "2024-09-24T09:57:32",
"upload_time_iso_8601": "2024-09-24T09:57:32.636752Z",
"url": "https://files.pythonhosted.org/packages/77/ec/6d3e9c1580074e57f5c26375aafae68f5248bc82fce0451057f965cf38e9/linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a164f3074341a13b51a1357186abd4d29969765d2112aff4ff28cfea44e6fe21",
"md5": "f010178eec90d8a04918fa926f345d9a",
"sha256": "628be681f59a07da0848174974cc0d331fc5daf2367d37f27aec94b7e8e16e70"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "f010178eec90d8a04918fa926f345d9a",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 1660363,
"upload_time": "2024-09-24T09:40:08",
"upload_time_iso_8601": "2024-09-24T09:40:08.607690Z",
"url": "https://files.pythonhosted.org/packages/a1/64/f3074341a13b51a1357186abd4d29969765d2112aff4ff28cfea44e6fe21/linearmodels-6.1-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0069659dfade0ba7cd6bbae08488ae4f060f192c987626196b4970bf58829f07",
"md5": "62e5bc4b914781276d15c6244e5f0eb7",
"sha256": "d9db86e757dfcd03e0c95a654fba72a7f5c9b42e1b7fe73dd240fc929aefa854"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "62e5bc4b914781276d15c6244e5f0eb7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1667216,
"upload_time": "2024-09-24T09:37:15",
"upload_time_iso_8601": "2024-09-24T09:37:15.213624Z",
"url": "https://files.pythonhosted.org/packages/00/69/659dfade0ba7cd6bbae08488ae4f060f192c987626196b4970bf58829f07/linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "61ecb37b80798f723d9279b2b0e2ee6083ae76c4e14acc5a227838761915ae4a",
"md5": "42205d24c1cb11a3d910f56a5ba1f6d6",
"sha256": "8eb8f2290608bd8c8e7965dec22399cf498a38a70692bb5d5a5b0dbddca4658e"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "42205d24c1cb11a3d910f56a5ba1f6d6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1661889,
"upload_time": "2024-09-24T09:37:16",
"upload_time_iso_8601": "2024-09-24T09:37:16.913393Z",
"url": "https://files.pythonhosted.org/packages/61/ec/b37b80798f723d9279b2b0e2ee6083ae76c4e14acc5a227838761915ae4a/linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "275f9d247b12b2a90396505d77d3558d4308239ddaa7eba8e926c0cd2f0e2ef8",
"md5": "ef91084f9107fa638dcb589b97506b90",
"sha256": "6f5a430361707ba79fb91fd4bf5acd85c7d4b41f0c964747d864ff3409bbfff6"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ef91084f9107fa638dcb589b97506b90",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1675632,
"upload_time": "2024-09-24T09:48:40",
"upload_time_iso_8601": "2024-09-24T09:48:40.458725Z",
"url": "https://files.pythonhosted.org/packages/27/5f/9d247b12b2a90396505d77d3558d4308239ddaa7eba8e926c0cd2f0e2ef8/linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6ac8308a5b8589027acaa90bba9da5311deb8ef258cbb57e8dd9b79360a3fe47",
"md5": "bbe66eb40542d861a05beeb06405b674",
"sha256": "5d81a96566087c61955db44e402e181484582300f7a05b3e27d65a87538ce0f3"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "bbe66eb40542d861a05beeb06405b674",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1683082,
"upload_time": "2024-09-24T09:48:41",
"upload_time_iso_8601": "2024-09-24T09:48:41.700338Z",
"url": "https://files.pythonhosted.org/packages/6a/c8/308a5b8589027acaa90bba9da5311deb8ef258cbb57e8dd9b79360a3fe47/linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "efeb5cfba10824d4e55a167f664d232b13ec15483ff34c3ca6f035d5f989da5a",
"md5": "511c2e8d6cbe5a331e05a1e238be82de",
"sha256": "c342b0a6aa5819901cde646f4d6a9da3387aad40e49bed792fcb5e57b6624246"
},
"downloads": -1,
"filename": "linearmodels-6.1-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "511c2e8d6cbe5a331e05a1e238be82de",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1659805,
"upload_time": "2024-09-24T09:41:36",
"upload_time_iso_8601": "2024-09-24T09:41:36.174836Z",
"url": "https://files.pythonhosted.org/packages/ef/eb/5cfba10824d4e55a167f664d232b13ec15483ff34c3ca6f035d5f989da5a/linearmodels-6.1-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5d295832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40",
"md5": "ab5536239cb968848eadfe797b67bf4c",
"sha256": "74ead48a054bc1b3ebec8e8d7187f17504058891b70c2e090372b4759eeb3e89"
},
"downloads": -1,
"filename": "linearmodels-6.1.tar.gz",
"has_sig": false,
"md5_digest": "ab5536239cb968848eadfe797b67bf4c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1828416,
"upload_time": "2024-09-24T09:46:18",
"upload_time_iso_8601": "2024-09-24T09:46:18.962233Z",
"url": "https://files.pythonhosted.org/packages/5d/29/5832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40/linearmodels-6.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-24 09:46:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bashtage",
"github_project": "linearmodels",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "linearmodels"
}