linpde-gp


Namelinpde-gp JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryLinear PDE Solvers as Gaussian Process Inference
upload_time2023-03-20 17:53:21
maintainer
docs_urlNone
author
requires_python<3.11,>=3.10
licenseMIT
keywords partial-differential-equations gaussian-processes probabilistic-numerics galerkin-method finite-element-method collocation-method spectral-methods
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LinPDE-GP: Linear PDE Solvers based on GP Regression

Code for the Paper "Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers"

## Getting Started

### Cloning the Repository

This repository includes Git submodules, so it is best cloned via

```shell
git clone --recurse-submodules git@github.com:marvinpfoertner/linpde-gp.git
```

If you forgot the `--recurse-submodules` flag when cloning, simply run

```shell
git submodule update --init --recursive
```

inside the repository.

### Installing a Full Development Environment

```shell
cd path/to/linpde-gp
pip install -r dev-requirements.txt
```

## Citation

If you use this software, please cite our paper.

```bibtex
@misc{Pfoertner2022LinPDEGP,
  author = {Pf\"ortner, Marvin and Steinwart, Ingo and Hennig, Philipp and Wenger, Jonathan},
  title = {Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers},
  year = {2022},
  publisher = {arXiv},
  doi = {10.48550/arxiv.2212.12474},
  url = {https://arxiv.org/abs/2212.12474}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "linpde-gp",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "<3.11,>=3.10",
    "maintainer_email": "",
    "keywords": "partial-differential-equations,gaussian-processes,probabilistic-numerics,galerkin-method,finite-element-method,collocation-method,spectral-methods",
    "author": "",
    "author_email": "Marvin Pf\u00f6rtner <marvin.pfoertner@uni-tuebingen.de>",
    "download_url": "",
    "platform": "any",
    "description": "# LinPDE-GP: Linear PDE Solvers based on GP Regression\n\nCode for the Paper \"Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers\"\n\n## Getting Started\n\n### Cloning the Repository\n\nThis repository includes Git submodules, so it is best cloned via\n\n```shell\ngit clone --recurse-submodules git@github.com:marvinpfoertner/linpde-gp.git\n```\n\nIf you forgot the `--recurse-submodules` flag when cloning, simply run\n\n```shell\ngit submodule update --init --recursive\n```\n\ninside the repository.\n\n### Installing a Full Development Environment\n\n```shell\ncd path/to/linpde-gp\npip install -r dev-requirements.txt\n```\n\n## Citation\n\nIf you use this software, please cite our paper.\n\n```bibtex\n@misc{Pfoertner2022LinPDEGP,\n  author = {Pf\\\"ortner, Marvin and Steinwart, Ingo and Hennig, Philipp and Wenger, Jonathan},\n  title = {Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers},\n  year = {2022},\n  publisher = {arXiv},\n  doi = {10.48550/arxiv.2212.12474},\n  url = {https://arxiv.org/abs/2212.12474}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Linear PDE Solvers as Gaussian Process Inference",
    "version": "0.0.1",
    "split_keywords": [
        "partial-differential-equations",
        "gaussian-processes",
        "probabilistic-numerics",
        "galerkin-method",
        "finite-element-method",
        "collocation-method",
        "spectral-methods"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "29633aed01589909dc1fd5d8ff4d8ffbbb2d8678ca41709ac7fc542cffd7c133",
                "md5": "417b0c934bd05c18e23ab50860f899e3",
                "sha256": "44d0e2024aac35b53552b9279baabeb2eae3ab96caf8a422a8d865780762fc15"
            },
            "downloads": -1,
            "filename": "linpde_gp-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "417b0c934bd05c18e23ab50860f899e3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.11,>=3.10",
            "size": 100927,
            "upload_time": "2023-03-20T17:53:21",
            "upload_time_iso_8601": "2023-03-20T17:53:21.164915Z",
            "url": "https://files.pythonhosted.org/packages/29/63/3aed01589909dc1fd5d8ff4d8ffbbb2d8678ca41709ac7fc542cffd7c133/linpde_gp-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-20 17:53:21",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "linpde-gp"
}
        
Elapsed time: 0.05263s