# LinPDE-GP: Linear PDE Solvers based on GP Regression
Code for the Paper "Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers"
## Getting Started
### Cloning the Repository
This repository includes Git submodules, so it is best cloned via
```shell
git clone --recurse-submodules git@github.com:marvinpfoertner/linpde-gp.git
```
If you forgot the `--recurse-submodules` flag when cloning, simply run
```shell
git submodule update --init --recursive
```
inside the repository.
### Installing a Full Development Environment
```shell
cd path/to/linpde-gp
pip install -r dev-requirements.txt
```
## Citation
If you use this software, please cite our paper.
```bibtex
@misc{Pfoertner2022LinPDEGP,
author = {Pf\"ortner, Marvin and Steinwart, Ingo and Hennig, Philipp and Wenger, Jonathan},
title = {Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers},
year = {2022},
publisher = {arXiv},
doi = {10.48550/arxiv.2212.12474},
url = {https://arxiv.org/abs/2212.12474}
}
```
Raw data
{
"_id": null,
"home_page": "",
"name": "linpde-gp",
"maintainer": "",
"docs_url": null,
"requires_python": "<3.11,>=3.10",
"maintainer_email": "",
"keywords": "partial-differential-equations,gaussian-processes,probabilistic-numerics,galerkin-method,finite-element-method,collocation-method,spectral-methods",
"author": "",
"author_email": "Marvin Pf\u00f6rtner <marvin.pfoertner@uni-tuebingen.de>",
"download_url": "",
"platform": "any",
"description": "# LinPDE-GP: Linear PDE Solvers based on GP Regression\n\nCode for the Paper \"Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers\"\n\n## Getting Started\n\n### Cloning the Repository\n\nThis repository includes Git submodules, so it is best cloned via\n\n```shell\ngit clone --recurse-submodules git@github.com:marvinpfoertner/linpde-gp.git\n```\n\nIf you forgot the `--recurse-submodules` flag when cloning, simply run\n\n```shell\ngit submodule update --init --recursive\n```\n\ninside the repository.\n\n### Installing a Full Development Environment\n\n```shell\ncd path/to/linpde-gp\npip install -r dev-requirements.txt\n```\n\n## Citation\n\nIf you use this software, please cite our paper.\n\n```bibtex\n@misc{Pfoertner2022LinPDEGP,\n author = {Pf\\\"ortner, Marvin and Steinwart, Ingo and Hennig, Philipp and Wenger, Jonathan},\n title = {Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers},\n year = {2022},\n publisher = {arXiv},\n doi = {10.48550/arxiv.2212.12474},\n url = {https://arxiv.org/abs/2212.12474}\n}\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Linear PDE Solvers as Gaussian Process Inference",
"version": "0.0.1",
"split_keywords": [
"partial-differential-equations",
"gaussian-processes",
"probabilistic-numerics",
"galerkin-method",
"finite-element-method",
"collocation-method",
"spectral-methods"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "29633aed01589909dc1fd5d8ff4d8ffbbb2d8678ca41709ac7fc542cffd7c133",
"md5": "417b0c934bd05c18e23ab50860f899e3",
"sha256": "44d0e2024aac35b53552b9279baabeb2eae3ab96caf8a422a8d865780762fc15"
},
"downloads": -1,
"filename": "linpde_gp-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "417b0c934bd05c18e23ab50860f899e3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.10",
"size": 100927,
"upload_time": "2023-03-20T17:53:21",
"upload_time_iso_8601": "2023-03-20T17:53:21.164915Z",
"url": "https://files.pythonhosted.org/packages/29/63/3aed01589909dc1fd5d8ff4d8ffbbb2d8678ca41709ac7fc542cffd7c133/linpde_gp-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-20 17:53:21",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "linpde-gp"
}