liteauto


Nameliteauto JSON
Version 0.0.81 PyPI version JSON
download
home_pagehttps://github.com/santhosh/
Summaryfree google results
upload_time2025-02-01 14:34:18
maintainerNone
docs_urlNone
authorKammari Santhosh
requires_python<4.0,>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LiteAuto 🚀

[![PyPI version](https://badge.fury.io/py/liteauto.svg)](https://badge.fury.io/py/liteauto)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

LiteAuto is a lightweight Python library that provides easy-to-use tools for web automation, content parsing, vision AI, and smart searching. It's designed to be simple yet powerful, making common automation tasks effortless.

## 📦 Installation

```bash
pip install liteauto
```

## ✨ Features

- 🔍 Smart Google search with multi-query support
- 📄 Fast content parsing from web pages and PDFs
- 🧠 Vision AI for content analysis
- 📧 Gmail automation
- 📚 arXiv paper analysis
- 🔄 Project to prompt conversion
- 🎯 Word-level text operations

## 🚀 Quick Start

### Web Search and Parsing

```python
from liteauto import google, parse

# Simple Google search
urls = google("python programming", max_urls=5)

# Parse web content
contents = parse(urls)
for content in contents:
    print(f"URL: {content.url}")
    print(f"Content: {content.content[:200]}...")
```

### Vision AI Features

```python
from liteauto import visionai, wlanswer, wlsplit

# Get AI-powered search results
results = visionai("machine learning fundamentals", k=3)
print(results)

# Split text into meaningful chunks
chunks = wlsplit(long_text)

# Get relevant answers from context
answer = wlanswer(context="long text...", query="specific question", k=1)
```

### Gmail Automation

```python
from liteauto import gmail, automail

# Send a simple email
gmail(body="Hello World!", 
      subject="Test Email", 
      to_email="recipient@example.com")

# Create an automated email responder
def auto_response(subject, body):
    return f"Auto-reply to: {subject}"

automail(auto_response, sleep_time=2)
```

### arXiv Integration

```python
from liteauto import get_todays_arxiv_papers, research_paper_analysis

# Get today's arXiv papers
papers_df = get_todays_arxiv_papers()

# Analyze a research paper
paper_insights = research_paper_analysis("https://arxiv.org/pdf/2301.00001.pdf")
print(paper_insights.summary_insights)
```

### Project Analysis

```python
from liteauto import ProjectToPrompt, project_to_markdown

# Convert project to documentation
project = ProjectToPrompt("path/to/project")
docs = project.generate_markdown()

# Generate markdown from project
markdown = project_to_markdown("path/to/project")
```

## 📚 Main Components

```python
from liteauto import (
    # Search and parsing
    google,          # Google search functionality
    parse,          # Web content parser
    aparse,         # Async web content parser
    
    # Vision AI
    visionai,       # Advanced vision AI search
    minivisionai,   # Lightweight vision AI
    deepvisionai,   # Deep vision AI analysis
    
    # Text operations
    wlanswer,       # Get answers from context
    wlsplit,        # Split text into chunks
    wlsimchunks,    # Get similar chunks
    wltopk,         # Get top-k similar items
    
    # Email
    gmail,          # Gmail operations
    automail,       # Email automation
    GmailAutomation,# Full Gmail automation class
    
    # arXiv
    get_todays_arxiv_papers,    # Get recent arXiv papers
    research_paper_analysis,    # Analyze research papers
    
    # Project tools
    ProjectToPrompt,           # Convert project to prompts
    project_to_markdown        # Convert project to markdown
)
```

## 🛠️ Advanced Usage

### Custom Search Configuration

```python
# Configure advanced search parameters
urls = google(
    query="python tutorials",
    max_urls=10,
    animation=False,
    allow_pdf_extraction=True,
    allow_youtube_urls_extraction=True
)
```

### Vision AI with Custom Parameters

```python
results = visionai(
    query="deep learning applications",
    max_urls=15,
    k=10,
    model="llama3.2:1b-instruct-q4_K_M",
    temperature=0.05,
    genai_query_k=7,
    query_k=15
)
```

### Automated Paper Analysis

```python
from liteauto import research_paper_analysis

paper = research_paper_analysis("paper_url.pdf")
print(f"Problem Statement: {paper.abs_insights.problem_statement}")
print(f"Key Approach: {paper.abs_insights.key_approach}")
print(f"Main Findings: {paper.summary_insights.main_results}")
```

## 🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## 📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

## ✨ Contributors

<a href="https://github.com/yourusername/liteauto/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=yourusername/liteauto" />
</a>

## 🌟 Star History

[![Star History Chart](https://api.star-history.com/svg?repos=yourusername/liteauto&type=Date)](https://star-history.com/#yourusername/liteauto&Date)
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/santhosh/",
    "name": "liteauto",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Kammari Santhosh",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/c6/e8/529de60e2e5e616565cf0a8de11523e70fd1084fbae5ade859c8688d3ac2/liteauto-0.0.81.tar.gz",
    "platform": null,
    "description": "# LiteAuto \ud83d\ude80\n\n[![PyPI version](https://badge.fury.io/py/liteauto.svg)](https://badge.fury.io/py/liteauto)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\nLiteAuto is a lightweight Python library that provides easy-to-use tools for web automation, content parsing, vision AI, and smart searching. It's designed to be simple yet powerful, making common automation tasks effortless.\n\n## \ud83d\udce6 Installation\n\n```bash\npip install liteauto\n```\n\n## \u2728 Features\n\n- \ud83d\udd0d Smart Google search with multi-query support\n- \ud83d\udcc4 Fast content parsing from web pages and PDFs\n- \ud83e\udde0 Vision AI for content analysis\n- \ud83d\udce7 Gmail automation\n- \ud83d\udcda arXiv paper analysis\n- \ud83d\udd04 Project to prompt conversion\n- \ud83c\udfaf Word-level text operations\n\n## \ud83d\ude80 Quick Start\n\n### Web Search and Parsing\n\n```python\nfrom liteauto import google, parse\n\n# Simple Google search\nurls = google(\"python programming\", max_urls=5)\n\n# Parse web content\ncontents = parse(urls)\nfor content in contents:\n    print(f\"URL: {content.url}\")\n    print(f\"Content: {content.content[:200]}...\")\n```\n\n### Vision AI Features\n\n```python\nfrom liteauto import visionai, wlanswer, wlsplit\n\n# Get AI-powered search results\nresults = visionai(\"machine learning fundamentals\", k=3)\nprint(results)\n\n# Split text into meaningful chunks\nchunks = wlsplit(long_text)\n\n# Get relevant answers from context\nanswer = wlanswer(context=\"long text...\", query=\"specific question\", k=1)\n```\n\n### Gmail Automation\n\n```python\nfrom liteauto import gmail, automail\n\n# Send a simple email\ngmail(body=\"Hello World!\", \n      subject=\"Test Email\", \n      to_email=\"recipient@example.com\")\n\n# Create an automated email responder\ndef auto_response(subject, body):\n    return f\"Auto-reply to: {subject}\"\n\nautomail(auto_response, sleep_time=2)\n```\n\n### arXiv Integration\n\n```python\nfrom liteauto import get_todays_arxiv_papers, research_paper_analysis\n\n# Get today's arXiv papers\npapers_df = get_todays_arxiv_papers()\n\n# Analyze a research paper\npaper_insights = research_paper_analysis(\"https://arxiv.org/pdf/2301.00001.pdf\")\nprint(paper_insights.summary_insights)\n```\n\n### Project Analysis\n\n```python\nfrom liteauto import ProjectToPrompt, project_to_markdown\n\n# Convert project to documentation\nproject = ProjectToPrompt(\"path/to/project\")\ndocs = project.generate_markdown()\n\n# Generate markdown from project\nmarkdown = project_to_markdown(\"path/to/project\")\n```\n\n## \ud83d\udcda Main Components\n\n```python\nfrom liteauto import (\n    # Search and parsing\n    google,          # Google search functionality\n    parse,          # Web content parser\n    aparse,         # Async web content parser\n    \n    # Vision AI\n    visionai,       # Advanced vision AI search\n    minivisionai,   # Lightweight vision AI\n    deepvisionai,   # Deep vision AI analysis\n    \n    # Text operations\n    wlanswer,       # Get answers from context\n    wlsplit,        # Split text into chunks\n    wlsimchunks,    # Get similar chunks\n    wltopk,         # Get top-k similar items\n    \n    # Email\n    gmail,          # Gmail operations\n    automail,       # Email automation\n    GmailAutomation,# Full Gmail automation class\n    \n    # arXiv\n    get_todays_arxiv_papers,    # Get recent arXiv papers\n    research_paper_analysis,    # Analyze research papers\n    \n    # Project tools\n    ProjectToPrompt,           # Convert project to prompts\n    project_to_markdown        # Convert project to markdown\n)\n```\n\n## \ud83d\udee0\ufe0f Advanced Usage\n\n### Custom Search Configuration\n\n```python\n# Configure advanced search parameters\nurls = google(\n    query=\"python tutorials\",\n    max_urls=10,\n    animation=False,\n    allow_pdf_extraction=True,\n    allow_youtube_urls_extraction=True\n)\n```\n\n### Vision AI with Custom Parameters\n\n```python\nresults = visionai(\n    query=\"deep learning applications\",\n    max_urls=15,\n    k=10,\n    model=\"llama3.2:1b-instruct-q4_K_M\",\n    temperature=0.05,\n    genai_query_k=7,\n    query_k=15\n)\n```\n\n### Automated Paper Analysis\n\n```python\nfrom liteauto import research_paper_analysis\n\npaper = research_paper_analysis(\"paper_url.pdf\")\nprint(f\"Problem Statement: {paper.abs_insights.problem_statement}\")\nprint(f\"Key Approach: {paper.abs_insights.key_approach}\")\nprint(f\"Main Findings: {paper.summary_insights.main_results}\")\n```\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## \ud83d\udcdd License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## \u2728 Contributors\n\n<a href=\"https://github.com/yourusername/liteauto/graphs/contributors\">\n  <img src=\"https://contrib.rocks/image?repo=yourusername/liteauto\" />\n</a>\n\n## \ud83c\udf1f Star History\n\n[![Star History Chart](https://api.star-history.com/svg?repos=yourusername/liteauto&type=Date)](https://star-history.com/#yourusername/liteauto&Date)",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "free google results",
    "version": "0.0.81",
    "project_urls": {
        "Homepage": "https://github.com/santhosh/",
        "Repository": "https://github.com/santhosh/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "88c52f4557954899d15285a6152647cbdeffa9caa2c53066561d9e64cba35535",
                "md5": "19cf9f6eb68246ac0200aa64c788191d",
                "sha256": "ceed1b04af4c53bc8c1f1c9d462023ebc47f9b0afe018bbb84f35ed301808c30"
            },
            "downloads": -1,
            "filename": "liteauto-0.0.81-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "19cf9f6eb68246ac0200aa64c788191d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 85902,
            "upload_time": "2025-02-01T14:34:15",
            "upload_time_iso_8601": "2025-02-01T14:34:15.059793Z",
            "url": "https://files.pythonhosted.org/packages/88/c5/2f4557954899d15285a6152647cbdeffa9caa2c53066561d9e64cba35535/liteauto-0.0.81-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c6e8529de60e2e5e616565cf0a8de11523e70fd1084fbae5ade859c8688d3ac2",
                "md5": "dc25826c83508d82c01f0e81fcaf83e2",
                "sha256": "63cd89f5b39823e9a47edd97e54d8c102a985f799648f39b5d463c934bef619f"
            },
            "downloads": -1,
            "filename": "liteauto-0.0.81.tar.gz",
            "has_sig": false,
            "md5_digest": "dc25826c83508d82c01f0e81fcaf83e2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 67810,
            "upload_time": "2025-02-01T14:34:18",
            "upload_time_iso_8601": "2025-02-01T14:34:18.026575Z",
            "url": "https://files.pythonhosted.org/packages/c6/e8/529de60e2e5e616565cf0a8de11523e70fd1084fbae5ade859c8688d3ac2/liteauto-0.0.81.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-01 14:34:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "liteauto"
}
        
Elapsed time: 1.01905s