llama-deploy


Namellama-deploy JSON
Version 0.9.1 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2025-07-29 18:24:40
maintainerNone
docs_urlNone
authorNone
requires_python<4.0,>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)
[![PyPI - Version](https://img.shields.io/pypi/v/llama-deploy.svg)](https://pypi.org/project/llama-deploy)
![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2Frun-llama%2Fllama_deploy%2Frefs%2Fheads%2Fmain%2Fpyproject.toml)
[![Static Badge](https://img.shields.io/badge/docs-latest-blue)](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/)


[![Unit Testing](https://github.com/run-llama/llama_deploy/actions/workflows/unit_test.yml/badge.svg)](https://github.com/run-llama/llama_deploy/actions/workflows/unit_test.yml)
[![E2E Testing](https://github.com/run-llama/llama_deploy/actions/workflows/e2e_test.yml/badge.svg)](https://github.com/run-llama/llama_deploy/actions/workflows/e2e_test.yml)
[![Coverage Status](https://coveralls.io/repos/github/run-llama/llama_deploy/badge.svg?branch=main)](https://coveralls.io/github/run-llama/llama_deploy?branch=main)


# 🦙 LlamaDeploy 🤖

LlamaDeploy (formerly `llama-agents`) is an async-first framework for deploying, scaling, and productionizing agentic
multi-service systems based on [workflows from `llama_index`](https://docs.llamaindex.ai/en/stable/understanding/workflows/).
With LlamaDeploy, you can build any number of workflows in `llama_index` and then run them as services, accessible
through a HTTP API by a user interface or other services part of your system.

The goal of LlamaDeploy is to easily transition something that you built in a notebook to something running on the
cloud with the minimum amount of changes to the original code, possibly zero. In order to make this transition a
pleasant one, you can interact with LlamaDeploy in two ways:

- Using the [`llamactl`](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/40_llamactl/) CLI from a shell.
- Through the [_LlamaDeploy SDK_](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/30_python_sdk/) from a Python application or script.

Both the SDK and the CLI are part of the LlamaDeploy Python package. To install, just run:

```bash
pip install -U llama-deploy
```
> [!TIP]
> For a comprehensive guide to LlamaDeploy's architecture and detailed descriptions of its components, visit our
[official documentation](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/).

## Why LlamaDeploy?

1. **Seamless Deployment**: It bridges the gap between development and production, allowing you to deploy `llama_index`
   workflows with minimal changes to your code.
3. **Flexibility**: By using a hub-and-spoke architecture, you can easily swap out components (like message queues) or
   add new services without disrupting the entire system.
4. **Fault Tolerance**: With built-in retry mechanisms and failure handling, LlamaDeploy adds robustness in
   production environments.
6. **Async-First**: Designed for high-concurrency scenarios, making it suitable for real-time and high-throughput
   applications.

> [!NOTE]
> This project was initially released under the name `llama-agents`,  but the introduction of [Workflows](https://docs.llamaindex.ai/en/stable/module_guides/workflow/#workflows) in `llama_index` turned out to be the most intuitive way for our users to develop agentic applications. We then decided to add new agentic features in `llama_index` directly, and focus LlamaDeploy on closing the gap between local development and remote execution of agents as services.

## Quick Start with `llamactl`

Spin up a running deployment in minutes using the interactive CLI wizard:

```bash
# 1. Install the package & CLI
pip install -U llama-deploy

# 2. Scaffold a new project (interactive)
llamactl init

#    or non-interactive
llamactl init --name project-name --template basic

# 3. Enter the project
cd project-name

# 4. Start the control-plane API server (new terminal)
python -m llama_deploy.apiserver

# 5. Deploy the generated workflow (another terminal)
llamactl deploy deployment.yml

# 6. Call it!
llamactl run --deployment hello-deploy --arg message "Hello world!"
```

Looking for more templates or integrations? Check the [`examples`](examples) directory for end-to-end demos (message queues, web UIs, etc.) or read the full [documentation](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-deploy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": "Logan Markewich <logan@llamaindex.ai>, Andrei Fajardo <andrei@runllama.ai>, Jerry Liu <jerry@llamaindex.ai>",
    "keywords": null,
    "author": null,
    "author_email": "Logan Markewich <logan.markewich@live.com>, Andrei Fajardo <andrei@runllama.ai>",
    "download_url": "https://files.pythonhosted.org/packages/fa/74/c6f96d9c96abec22f3250c7ab241b810b552d55c9ae0e23400bb32913df5/llama_deploy-0.9.1.tar.gz",
    "platform": null,
    "description": "[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)\n[![PyPI - Version](https://img.shields.io/pypi/v/llama-deploy.svg)](https://pypi.org/project/llama-deploy)\n![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2Frun-llama%2Fllama_deploy%2Frefs%2Fheads%2Fmain%2Fpyproject.toml)\n[![Static Badge](https://img.shields.io/badge/docs-latest-blue)](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/)\n\n\n[![Unit Testing](https://github.com/run-llama/llama_deploy/actions/workflows/unit_test.yml/badge.svg)](https://github.com/run-llama/llama_deploy/actions/workflows/unit_test.yml)\n[![E2E Testing](https://github.com/run-llama/llama_deploy/actions/workflows/e2e_test.yml/badge.svg)](https://github.com/run-llama/llama_deploy/actions/workflows/e2e_test.yml)\n[![Coverage Status](https://coveralls.io/repos/github/run-llama/llama_deploy/badge.svg?branch=main)](https://coveralls.io/github/run-llama/llama_deploy?branch=main)\n\n\n# \ud83e\udd99 LlamaDeploy \ud83e\udd16\n\nLlamaDeploy (formerly `llama-agents`) is an async-first framework for deploying, scaling, and productionizing agentic\nmulti-service systems based on [workflows from `llama_index`](https://docs.llamaindex.ai/en/stable/understanding/workflows/).\nWith LlamaDeploy, you can build any number of workflows in `llama_index` and then run them as services, accessible\nthrough a HTTP API by a user interface or other services part of your system.\n\nThe goal of LlamaDeploy is to easily transition something that you built in a notebook to something running on the\ncloud with the minimum amount of changes to the original code, possibly zero. In order to make this transition a\npleasant one, you can interact with LlamaDeploy in two ways:\n\n- Using the [`llamactl`](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/40_llamactl/) CLI from a shell.\n- Through the [_LlamaDeploy SDK_](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/30_python_sdk/) from a Python application or script.\n\nBoth the SDK and the CLI are part of the LlamaDeploy Python package. To install, just run:\n\n```bash\npip install -U llama-deploy\n```\n> [!TIP]\n> For a comprehensive guide to LlamaDeploy's architecture and detailed descriptions of its components, visit our\n[official documentation](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/).\n\n## Why LlamaDeploy?\n\n1. **Seamless Deployment**: It bridges the gap between development and production, allowing you to deploy `llama_index`\n   workflows with minimal changes to your code.\n3. **Flexibility**: By using a hub-and-spoke architecture, you can easily swap out components (like message queues) or\n   add new services without disrupting the entire system.\n4. **Fault Tolerance**: With built-in retry mechanisms and failure handling, LlamaDeploy adds robustness in\n   production environments.\n6. **Async-First**: Designed for high-concurrency scenarios, making it suitable for real-time and high-throughput\n   applications.\n\n> [!NOTE]\n> This project was initially released under the name `llama-agents`,  but the introduction of [Workflows](https://docs.llamaindex.ai/en/stable/module_guides/workflow/#workflows) in `llama_index` turned out to be the most intuitive way for our users to develop agentic applications. We then decided to add new agentic features in `llama_index` directly, and focus LlamaDeploy on closing the gap between local development and remote execution of agents as services.\n\n## Quick Start with `llamactl`\n\nSpin up a running deployment in minutes using the interactive CLI wizard:\n\n```bash\n# 1. Install the package & CLI\npip install -U llama-deploy\n\n# 2. Scaffold a new project (interactive)\nllamactl init\n\n#    or non-interactive\nllamactl init --name project-name --template basic\n\n# 3. Enter the project\ncd project-name\n\n# 4. Start the control-plane API server (new terminal)\npython -m llama_deploy.apiserver\n\n# 5. Deploy the generated workflow (another terminal)\nllamactl deploy deployment.yml\n\n# 6. Call it!\nllamactl run --deployment hello-deploy --arg message \"Hello world!\"\n```\n\nLooking for more templates or integrations? Check the [`examples`](examples) directory for end-to-end demos (message queues, web UIs, etc.) or read the full [documentation](https://docs.llamaindex.ai/en/latest/module_guides/llama_deploy/).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.9.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "20b390f79bee19002a3ffd8e234c5d5f3489eb53232640a3b08635bd92b74d3b",
                "md5": "b3c2f435dd1c53babfa2808ed3b45f81",
                "sha256": "c7a411827d514974154a3424d34af3fcba1efe8e4cd3cac18f3af29c8416522f"
            },
            "downloads": -1,
            "filename": "llama_deploy-0.9.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b3c2f435dd1c53babfa2808ed3b45f81",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 44946,
            "upload_time": "2025-07-29T18:24:39",
            "upload_time_iso_8601": "2025-07-29T18:24:39.269264Z",
            "url": "https://files.pythonhosted.org/packages/20/b3/90f79bee19002a3ffd8e234c5d5f3489eb53232640a3b08635bd92b74d3b/llama_deploy-0.9.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fa74c6f96d9c96abec22f3250c7ab241b810b552d55c9ae0e23400bb32913df5",
                "md5": "6ecffb26b3c84cabb9e38809aa5fcf37",
                "sha256": "0df5033789acd68f9eb469e9b933b4f9bc5a71444916c323c8543f4515c436d5"
            },
            "downloads": -1,
            "filename": "llama_deploy-0.9.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6ecffb26b3c84cabb9e38809aa5fcf37",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 2356674,
            "upload_time": "2025-07-29T18:24:40",
            "upload_time_iso_8601": "2025-07-29T18:24:40.464960Z",
            "url": "https://files.pythonhosted.org/packages/fa/74/c6f96d9c96abec22f3250c7ab241b810b552d55c9ae0e23400bb32913df5/llama_deploy-0.9.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-29 18:24:40",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-deploy"
}
        
Elapsed time: 3.58635s