llama-extract


Namellama-extract JSON
Version 0.0.5 PyPI version JSON
download
home_pageNone
SummaryInfer schema and extract data from unstructured files
upload_time2024-09-27 15:33:22
maintainerNone
docs_urlNone
authorLogan Markewich
requires_python<4.0,>=3.8.1
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaExtract (Experimental)

LlamaExtract is an API created by LlamaIndex to efficiently infer schema and extract data from unstructured files.

LlamaExtract directly integrates with [LlamaIndex](https://github.com/run-llama/llama_index).

Note: LlamaExtract is currently experimental and may change in the future.

Read below for some quickstart information, or see the [full documentation](https://docs.cloud.llamaindex.ai/).

## Getting Started

First, login and get an api-key from [**https://cloud.llamaindex.ai ↗**](https://cloud.llamaindex.ai).

Install the package:

`pip install llama-extract`

Now you can easily infer schemas and extract data from your files:

```python
import nest_asyncio

nest_asyncio.apply()

from llama_extract import LlamaExtract

extractor = LlamaExtract(
    api_key="llx-...",  # can also be set in your env as LLAMA_CLOUD_API_KEY
    num_workers=4,  # if multiple files passed, split in `num_workers` API calls
    verbose=True,
)

# Infer schema
schema = extractor.infer_schema(
    "my_schema", ["./my_file1.pdf", "./my_file2.pdf"]
)

# Extract data
results = extractor.extract(schema.id, ["./my_file1.pdf", "./my_file2.pdf"])
```

## Examples

Several end-to-end examples can be found in the examples folder

- [Getting Started](examples/demo_basic.ipynb)

## Documentation

[https://docs.cloud.llamaindex.ai/](https://docs.cloud.llamaindex.ai/)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-extract",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8.1",
    "maintainer_email": null,
    "keywords": null,
    "author": "Logan Markewich",
    "author_email": "logan@llamaindex.ai",
    "download_url": "https://files.pythonhosted.org/packages/26/b1/a49cd4fa1ac2f0c515d67537ce715e4c66729f9327c8f17ea5ba942d5322/llama_extract-0.0.5.tar.gz",
    "platform": null,
    "description": "# LlamaExtract (Experimental)\n\nLlamaExtract is an API created by LlamaIndex to efficiently infer schema and extract data from unstructured files.\n\nLlamaExtract directly integrates with [LlamaIndex](https://github.com/run-llama/llama_index).\n\nNote: LlamaExtract is currently experimental and may change in the future.\n\nRead below for some quickstart information, or see the [full documentation](https://docs.cloud.llamaindex.ai/).\n\n## Getting Started\n\nFirst, login and get an api-key from [**https://cloud.llamaindex.ai \u2197**](https://cloud.llamaindex.ai).\n\nInstall the package:\n\n`pip install llama-extract`\n\nNow you can easily infer schemas and extract data from your files:\n\n```python\nimport nest_asyncio\n\nnest_asyncio.apply()\n\nfrom llama_extract import LlamaExtract\n\nextractor = LlamaExtract(\n    api_key=\"llx-...\",  # can also be set in your env as LLAMA_CLOUD_API_KEY\n    num_workers=4,  # if multiple files passed, split in `num_workers` API calls\n    verbose=True,\n)\n\n# Infer schema\nschema = extractor.infer_schema(\n    \"my_schema\", [\"./my_file1.pdf\", \"./my_file2.pdf\"]\n)\n\n# Extract data\nresults = extractor.extract(schema.id, [\"./my_file1.pdf\", \"./my_file2.pdf\"])\n```\n\n## Examples\n\nSeveral end-to-end examples can be found in the examples folder\n\n- [Getting Started](examples/demo_basic.ipynb)\n\n## Documentation\n\n[https://docs.cloud.llamaindex.ai/](https://docs.cloud.llamaindex.ai/)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Infer schema and extract data from unstructured files",
    "version": "0.0.5",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd2f0d5f4f46aad941f157ecb73d22596d56664d735494f348fa48cef48486e5",
                "md5": "34283d0005c19a7fbcd8b47bd147ca43",
                "sha256": "8bf7ec8c7db3052fefb0afcdac785e87824593a65fe408eed18726b0fd1d88fa"
            },
            "downloads": -1,
            "filename": "llama_extract-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "34283d0005c19a7fbcd8b47bd147ca43",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8.1",
            "size": 6420,
            "upload_time": "2024-09-27T15:33:21",
            "upload_time_iso_8601": "2024-09-27T15:33:21.450953Z",
            "url": "https://files.pythonhosted.org/packages/fd/2f/0d5f4f46aad941f157ecb73d22596d56664d735494f348fa48cef48486e5/llama_extract-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "26b1a49cd4fa1ac2f0c515d67537ce715e4c66729f9327c8f17ea5ba942d5322",
                "md5": "cc276cb68f5a4b9e68e417739c496d0a",
                "sha256": "91ecdbe69df5a292b88dee1041d0a702591b7cc1d79a55006f431d77a90f66ed"
            },
            "downloads": -1,
            "filename": "llama_extract-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "cc276cb68f5a4b9e68e417739c496d0a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8.1",
            "size": 5575,
            "upload_time": "2024-09-27T15:33:22",
            "upload_time_iso_8601": "2024-09-27T15:33:22.653104Z",
            "url": "https://files.pythonhosted.org/packages/26/b1/a49cd4fa1ac2f0c515d67537ce715e4c66729f9327c8f17ea5ba942d5322/llama_extract-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-27 15:33:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-extract"
}
        
Elapsed time: 0.36463s