llama-index-embeddings-deepinfra


Namellama-index-embeddings-deepinfra JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
Summaryllama-index embeddings deepinfra integration
upload_time2024-05-31 14:25:58
maintainerNone
docs_urlNone
authorOguz Vuruskaner
requires_python<4.0,>=3.8.1
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex Embeddings Integration: Deepinfra

With this integration, you can use the Deepinfra embeddings model to get embeddings for your text data.
Here is the link to the [embeddings models](https://deepinfra.com./models/embeddings).

First, you need to sign up on the [Deepinfra website](https://deepinfra.com/) and get the API token.
You can copy model_ids over the model cards and start using them in your code.

## Installation

```bash
pip install llama-index llama-index-embeddings-deepinfra
```

## Usage

```python
from dotenv import load_dotenv, find_dotenv
from llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel

# Load environment variables
_ = load_dotenv(find_dotenv())

# Initialize model with optional configuration
model = DeepInfraEmbeddingModel(
    model_id="BAAI/bge-large-en-v1.5",  # Use custom model ID
    api_token="YOUR_API_TOKEN",  # Optionally provide token here
    normalize=True,  # Optional normalization
    text_prefix="text: ",  # Optional text prefix
    query_prefix="query: ",  # Optional query prefix
)

# Example usage
response = model.get_text_embedding("hello world")

# Batch requests
texts = ["hello world", "goodbye world"]
response = model.get_text_embedding_batch(texts)

# Query requests
response = model.get_query_embedding("hello world")


# Asynchronous requests
async def main():
    text = "hello world"
    response = await model.aget_text_embedding(text)


if __name__ == "__main__":
    import asyncio

    asyncio.run(main())
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-embeddings-deepinfra",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8.1",
    "maintainer_email": null,
    "keywords": null,
    "author": "Oguz Vuruskaner",
    "author_email": "oguzvuruskaner@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c5/39/c3350cbd670500b21db28726b74dac9dd4e3f030bf6ccf9f98ed431aebef/llama_index_embeddings_deepinfra-0.1.1.tar.gz",
    "platform": null,
    "description": "# LlamaIndex Embeddings Integration: Deepinfra\n\nWith this integration, you can use the Deepinfra embeddings model to get embeddings for your text data.\nHere is the link to the [embeddings models](https://deepinfra.com./models/embeddings).\n\nFirst, you need to sign up on the [Deepinfra website](https://deepinfra.com/) and get the API token.\nYou can copy model_ids over the model cards and start using them in your code.\n\n## Installation\n\n```bash\npip install llama-index llama-index-embeddings-deepinfra\n```\n\n## Usage\n\n```python\nfrom dotenv import load_dotenv, find_dotenv\nfrom llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel\n\n# Load environment variables\n_ = load_dotenv(find_dotenv())\n\n# Initialize model with optional configuration\nmodel = DeepInfraEmbeddingModel(\n    model_id=\"BAAI/bge-large-en-v1.5\",  # Use custom model ID\n    api_token=\"YOUR_API_TOKEN\",  # Optionally provide token here\n    normalize=True,  # Optional normalization\n    text_prefix=\"text: \",  # Optional text prefix\n    query_prefix=\"query: \",  # Optional query prefix\n)\n\n# Example usage\nresponse = model.get_text_embedding(\"hello world\")\n\n# Batch requests\ntexts = [\"hello world\", \"goodbye world\"]\nresponse = model.get_text_embedding_batch(texts)\n\n# Query requests\nresponse = model.get_query_embedding(\"hello world\")\n\n\n# Asynchronous requests\nasync def main():\n    text = \"hello world\"\n    response = await model.aget_text_embedding(text)\n\n\nif __name__ == \"__main__\":\n    import asyncio\n\n    asyncio.run(main())\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index embeddings deepinfra integration",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "926d569b27746302e7fd4761a3891ba30cf07fe89a738b3d5d15ef4dfc631caf",
                "md5": "621d4caad77c9ed246f343ac488030c8",
                "sha256": "fe0a902d510f6770aab6eeadc49ce12eae2d72d9583b547a00fcf8c564c806f7"
            },
            "downloads": -1,
            "filename": "llama_index_embeddings_deepinfra-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "621d4caad77c9ed246f343ac488030c8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8.1",
            "size": 4450,
            "upload_time": "2024-05-31T14:25:57",
            "upload_time_iso_8601": "2024-05-31T14:25:57.340618Z",
            "url": "https://files.pythonhosted.org/packages/92/6d/569b27746302e7fd4761a3891ba30cf07fe89a738b3d5d15ef4dfc631caf/llama_index_embeddings_deepinfra-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c539c3350cbd670500b21db28726b74dac9dd4e3f030bf6ccf9f98ed431aebef",
                "md5": "e368348aa00be7afa081309d546c707f",
                "sha256": "d59d6488166e16dfbcd8435a4d775a2a4d2a7e0cf80f6445504b7f8f0ecb2abd"
            },
            "downloads": -1,
            "filename": "llama_index_embeddings_deepinfra-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e368348aa00be7afa081309d546c707f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8.1",
            "size": 3842,
            "upload_time": "2024-05-31T14:25:58",
            "upload_time_iso_8601": "2024-05-31T14:25:58.310844Z",
            "url": "https://files.pythonhosted.org/packages/c5/39/c3350cbd670500b21db28726b74dac9dd4e3f030bf6ccf9f98ed431aebef/llama_index_embeddings_deepinfra-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-31 14:25:58",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-embeddings-deepinfra"
}
        
Elapsed time: 0.22511s