Name | llama-index-embeddings-textembed JSON |
Version |
0.1.1
JSON |
| download |
home_page | None |
Summary | Integration of TextEmbed with llama-index for embeddings. |
upload_time | 2024-11-05 21:31:44 |
maintainer | None |
docs_url | None |
author | Keval Dekivadiya |
requires_python | <4.0,>=3.8.1 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# TextEmbed - Embedding Inference Server
Maintained by Keval Dekivadiya, TextEmbed is licensed under the [Apache-2.0 License](https://opensource.org/licenses/Apache-2.0).
TextEmbed is a high-throughput, low-latency REST API designed for serving vector embeddings. It supports a wide range of sentence-transformer models and frameworks, making it suitable for various applications in natural language processing.
## Features
- **High Throughput & Low Latency**: Designed to handle a large number of requests efficiently.
- **Flexible Model Support**: Works with various sentence-transformer models.
- **Scalable**: Easily integrates into larger systems and scales with demand.
- **Batch Processing**: Supports batch processing for better and faster inference.
- **OpenAI Compatible REST API Endpoint**: Provides an OpenAI compatible REST API endpoint.
- **Single Line Command Deployment**: Deploy multiple models via a single command for efficient deployment.
- **Support for Embedding Formats**: Supports binary, float16, and float32 embeddings formats for faster retrieval.
## Getting Started
### Prerequisites
Ensure you have Python 3.10 or higher installed. You will also need to install the required dependencies.
### Installation via PyPI
Install the required dependencies:
```bash
pip install -U textembed
```
### Start the TextEmbed Server
Start the TextEmbed server with your desired models:
```bash
python -m textembed.server --models sentence-transformers/all-MiniLM-L12-v2 --workers 4 --api-key TextEmbed
```
### Example Usage with llama-index
Here's a simple example to get you started with llama-index:
```python
from llama_index.embeddings.textembed import TextEmbedEmbedding
# Initialize the TextEmbedEmbedding class
embed = TextEmbedEmbedding(
model_name="sentence-transformers/all-MiniLM-L12-v2",
base_url="http://0.0.0.0:8000/v1",
auth_token="TextEmbed",
)
# Get embeddings for a batch of texts
embeddings = embed.get_text_embedding_batch(
[
"It is raining cats and dogs here!",
"India has a diverse cultural heritage.",
]
)
print(embeddings)
```
For more information, please read the [documentation](https://github.com/kevaldekivadiya2415/textembed/blob/main/docs/setup.md).
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-embeddings-textembed",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.8.1",
"maintainer_email": null,
"keywords": null,
"author": "Keval Dekivadiya",
"author_email": "kevaldekivadiya2415@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b2/3d/1b8283c42c48a3cc66e9249a00a8f9035f1fb9b57fadaf53b7182f70f5e5/llama_index_embeddings_textembed-0.1.1.tar.gz",
"platform": null,
"description": "# TextEmbed - Embedding Inference Server\n\nMaintained by Keval Dekivadiya, TextEmbed is licensed under the [Apache-2.0 License](https://opensource.org/licenses/Apache-2.0).\n\nTextEmbed is a high-throughput, low-latency REST API designed for serving vector embeddings. It supports a wide range of sentence-transformer models and frameworks, making it suitable for various applications in natural language processing.\n\n## Features\n\n- **High Throughput & Low Latency**: Designed to handle a large number of requests efficiently.\n- **Flexible Model Support**: Works with various sentence-transformer models.\n- **Scalable**: Easily integrates into larger systems and scales with demand.\n- **Batch Processing**: Supports batch processing for better and faster inference.\n- **OpenAI Compatible REST API Endpoint**: Provides an OpenAI compatible REST API endpoint.\n- **Single Line Command Deployment**: Deploy multiple models via a single command for efficient deployment.\n- **Support for Embedding Formats**: Supports binary, float16, and float32 embeddings formats for faster retrieval.\n\n## Getting Started\n\n### Prerequisites\n\nEnsure you have Python 3.10 or higher installed. You will also need to install the required dependencies.\n\n### Installation via PyPI\n\nInstall the required dependencies:\n\n```bash\npip install -U textembed\n```\n\n### Start the TextEmbed Server\n\nStart the TextEmbed server with your desired models:\n\n```bash\npython -m textembed.server --models sentence-transformers/all-MiniLM-L12-v2 --workers 4 --api-key TextEmbed\n```\n\n### Example Usage with llama-index\n\nHere's a simple example to get you started with llama-index:\n\n```python\nfrom llama_index.embeddings.textembed import TextEmbedEmbedding\n\n# Initialize the TextEmbedEmbedding class\nembed = TextEmbedEmbedding(\n model_name=\"sentence-transformers/all-MiniLM-L12-v2\",\n base_url=\"http://0.0.0.0:8000/v1\",\n auth_token=\"TextEmbed\",\n)\n\n# Get embeddings for a batch of texts\nembeddings = embed.get_text_embedding_batch(\n [\n \"It is raining cats and dogs here!\",\n \"India has a diverse cultural heritage.\",\n ]\n)\n\nprint(embeddings)\n```\n\nFor more information, please read the [documentation](https://github.com/kevaldekivadiya2415/textembed/blob/main/docs/setup.md).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Integration of TextEmbed with llama-index for embeddings.",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5220dbad9b3c0810a59521c7f18d789d45b713e1c8f1ba73d85eae3ab196ff15",
"md5": "c4987e9c0505fd7a09150aca9069df86",
"sha256": "46474731952e21e0fe1bf09ec1d9cfe52ed0d890f203bf59911420805a6b8cf5"
},
"downloads": -1,
"filename": "llama_index_embeddings_textembed-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c4987e9c0505fd7a09150aca9069df86",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.8.1",
"size": 4290,
"upload_time": "2024-11-05T21:31:43",
"upload_time_iso_8601": "2024-11-05T21:31:43.114473Z",
"url": "https://files.pythonhosted.org/packages/52/20/dbad9b3c0810a59521c7f18d789d45b713e1c8f1ba73d85eae3ab196ff15/llama_index_embeddings_textembed-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b23d1b8283c42c48a3cc66e9249a00a8f9035f1fb9b57fadaf53b7182f70f5e5",
"md5": "ee0ab68f1da05fde28ebcaad03fd8116",
"sha256": "ee4a78170be5788e7d527a15a8c967c4bf344b731526a3aa466bc939059a1941"
},
"downloads": -1,
"filename": "llama_index_embeddings_textembed-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "ee0ab68f1da05fde28ebcaad03fd8116",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.8.1",
"size": 3825,
"upload_time": "2024-11-05T21:31:44",
"upload_time_iso_8601": "2024-11-05T21:31:44.334860Z",
"url": "https://files.pythonhosted.org/packages/b2/3d/1b8283c42c48a3cc66e9249a00a8f9035f1fb9b57fadaf53b7182f70f5e5/llama_index_embeddings_textembed-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-05 21:31:44",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-embeddings-textembed"
}