llama-index-llms-google-genai


Namellama-index-llms-google-genai JSON
Version 0.2.5 PyPI version JSON
download
home_pageNone
Summaryllama-index llms google genai integration
upload_time2025-07-16 09:49:22
maintainerNone
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex Llms Integration: Google GenAI

## Installation

1. Install the required Python packages:

   ```bash
   %pip install llama-index-llms-google-genai
   ```

2. Set the Google API key as an environment variable:

   ```bash
   %env GOOGLE_API_KEY=your_api_key_here
   ```

## Usage

### Basic Content Generation

To generate a poem using the Gemini model, use the following code:

```python
from llama_index.llms.google_genai import GoogleGenAI

llm = GoogleGenAI(model="gemini-2.0-flash")
resp = llm.complete("Write a poem about a magic backpack")
print(resp)
```

### Chat with Messages

To simulate a conversation, send a list of messages:

```python
from llama_index.core.llms import ChatMessage
from llama_index.llms.google_genai import GoogleGenAI

messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]

llm = GoogleGenAI(model="gemini-2.0-flash")
resp = llm.chat(messages)
print(resp)
```

### Streaming Responses

To stream content responses in real-time:

```python
from llama_index.llms.google_genai import GoogleGenAI

llm = GoogleGenAI(model="gemini-2.0-flash")
resp = llm.stream_complete(
    "The story of Sourcrust, the bread creature, is really interesting. It all started when..."
)
for r in resp:
    print(r.text, end="")
```

To stream chat responses:

```python
from llama_index.core.llms import ChatMessage
from llama_index.llms.google_genai import GoogleGenAI

llm = GoogleGenAI(model="gemini-2.0-flash")
messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]
resp = llm.stream_chat(messages)
```

### Specific Model Usage

To use a specific model, you can configure it like this:

```python
from llama_index.llms.google_genai import GoogleGenAI

llm = GoogleGenAI(model="models/gemini-pro")
resp = llm.complete("Write a short, but joyous, ode to LlamaIndex")
print(resp)
```

### Asynchronous API

To use the asynchronous completion API:

```python
from llama_index.llms.google_genai import GoogleGenAI

llm = GoogleGenAI(model="models/gemini-pro")
resp = await llm.acomplete("Llamas are famous for ")
print(resp)
```

For asynchronous streaming of responses:

```python
resp = await llm.astream_complete("Llamas are famous for ")
async for chunk in resp:
    print(chunk.text, end="")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-llms-google-genai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/2c/ce/0be30bf12300ddeb7768d3c99dc20c1092e08c5bc40fb889f8db8b0ae27c/llama_index_llms_google_genai-0.2.5.tar.gz",
    "platform": null,
    "description": "# LlamaIndex Llms Integration: Google GenAI\n\n## Installation\n\n1. Install the required Python packages:\n\n   ```bash\n   %pip install llama-index-llms-google-genai\n   ```\n\n2. Set the Google API key as an environment variable:\n\n   ```bash\n   %env GOOGLE_API_KEY=your_api_key_here\n   ```\n\n## Usage\n\n### Basic Content Generation\n\nTo generate a poem using the Gemini model, use the following code:\n\n```python\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nllm = GoogleGenAI(model=\"gemini-2.0-flash\")\nresp = llm.complete(\"Write a poem about a magic backpack\")\nprint(resp)\n```\n\n### Chat with Messages\n\nTo simulate a conversation, send a list of messages:\n\n```python\nfrom llama_index.core.llms import ChatMessage\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nmessages = [\n    ChatMessage(role=\"user\", content=\"Hello friend!\"),\n    ChatMessage(role=\"assistant\", content=\"Yarr what is shakin' matey?\"),\n    ChatMessage(\n        role=\"user\", content=\"Help me decide what to have for dinner.\"\n    ),\n]\n\nllm = GoogleGenAI(model=\"gemini-2.0-flash\")\nresp = llm.chat(messages)\nprint(resp)\n```\n\n### Streaming Responses\n\nTo stream content responses in real-time:\n\n```python\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nllm = GoogleGenAI(model=\"gemini-2.0-flash\")\nresp = llm.stream_complete(\n    \"The story of Sourcrust, the bread creature, is really interesting. It all started when...\"\n)\nfor r in resp:\n    print(r.text, end=\"\")\n```\n\nTo stream chat responses:\n\n```python\nfrom llama_index.core.llms import ChatMessage\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nllm = GoogleGenAI(model=\"gemini-2.0-flash\")\nmessages = [\n    ChatMessage(role=\"user\", content=\"Hello friend!\"),\n    ChatMessage(role=\"assistant\", content=\"Yarr what is shakin' matey?\"),\n    ChatMessage(\n        role=\"user\", content=\"Help me decide what to have for dinner.\"\n    ),\n]\nresp = llm.stream_chat(messages)\n```\n\n### Specific Model Usage\n\nTo use a specific model, you can configure it like this:\n\n```python\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nllm = GoogleGenAI(model=\"models/gemini-pro\")\nresp = llm.complete(\"Write a short, but joyous, ode to LlamaIndex\")\nprint(resp)\n```\n\n### Asynchronous API\n\nTo use the asynchronous completion API:\n\n```python\nfrom llama_index.llms.google_genai import GoogleGenAI\n\nllm = GoogleGenAI(model=\"models/gemini-pro\")\nresp = await llm.acomplete(\"Llamas are famous for \")\nprint(resp)\n```\n\nFor asynchronous streaming of responses:\n\n```python\nresp = await llm.astream_complete(\"Llamas are famous for \")\nasync for chunk in resp:\n    print(chunk.text, end=\"\")\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index llms google genai integration",
    "version": "0.2.5",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8a96cc64aae80826254c95f9b5360ee7bc54d8939e58229a8db7e366cd36c4f4",
                "md5": "28877528ad34d9ecff929da412296d5e",
                "sha256": "29cdc679f073cfbcd9098f51a678611b405638246660f18707849b4df4a02146"
            },
            "downloads": -1,
            "filename": "llama_index_llms_google_genai-0.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "28877528ad34d9ecff929da412296d5e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 11701,
            "upload_time": "2025-07-16T09:49:21",
            "upload_time_iso_8601": "2025-07-16T09:49:21.970792Z",
            "url": "https://files.pythonhosted.org/packages/8a/96/cc64aae80826254c95f9b5360ee7bc54d8939e58229a8db7e366cd36c4f4/llama_index_llms_google_genai-0.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2cce0be30bf12300ddeb7768d3c99dc20c1092e08c5bc40fb889f8db8b0ae27c",
                "md5": "424ae4e067c81a04f9023ab9d3bf76bc",
                "sha256": "17c2b84ca2299c1cb41d514b763c23b65104617fef3e991774cadadd37f128ad"
            },
            "downloads": -1,
            "filename": "llama_index_llms_google_genai-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "424ae4e067c81a04f9023ab9d3bf76bc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 11325,
            "upload_time": "2025-07-16T09:49:22",
            "upload_time_iso_8601": "2025-07-16T09:49:22.766971Z",
            "url": "https://files.pythonhosted.org/packages/2c/ce/0be30bf12300ddeb7768d3c99dc20c1092e08c5bc40fb889f8db8b0ae27c/llama_index_llms_google_genai-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-16 09:49:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-llms-google-genai"
}
        
Elapsed time: 0.41656s