llama-index-llms-llamafile


Namellama-index-llms-llamafile JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index llms llamafile integration
upload_time2025-07-30 20:54:15
maintainerNone
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex Llms Integration: llamafile

## Setup Steps

### 1. Download a LlamaFile

Use the following command to download a LlamaFile from Hugging Face:

```bash
wget https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile
```

### 2. Make the File Executable

On Unix-like systems, run the following command:

```bash
chmod +x TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile
```

For Windows, simply rename the file to end with `.exe`.

### 3. Start the Model Server

Run the following command to start the model server, which will listen on `http://localhost:8080` by default:

```bash
./TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile --server --nobrowser --embedding
```

## Using LlamaIndex

If you are using Google Colab or want to interact with LlamaIndex, you will need to install the necessary packages:

```bash
%pip install llama-index-llms-llamafile
!pip install llama-index
```

### Import Required Libraries

```python
from llama_index.llms.llamafile import Llamafile
from llama_index.core.llms import ChatMessage
```

### Initialize the LLM

Create an instance of the LlamaFile LLM:

```python
llm = Llamafile(temperature=0, seed=0)
```

### Generate Completions

To generate a completion for a prompt, use the `complete` method:

```python
resp = llm.complete("Who is Octavia Butler?")
print(resp)
```

### Call Chat with a List of Messages

You can also interact with the LLM using a list of messages:

```python
messages = [
    ChatMessage(
        role="system",
        content="Pretend you are a pirate with a colorful personality.",
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)
```

### Streaming Responses

To use the streaming capabilities, you can call the `stream_complete` method:

```python
response = llm.stream_complete("Who is Octavia Butler?")
for r in response:
    print(r.delta, end="")
```

You can also stream chat responses:

```python
messages = [
    ChatMessage(
        role="system",
        content="Pretend you are a pirate with a colorful personality.",
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")
```

### LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/llamafile/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-llms-llamafile",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/dc/83/5f23a0a0daf78c63c1648a800b268a936057f54ae678840139697eb24c51/llama_index_llms_llamafile-0.4.0.tar.gz",
    "platform": null,
    "description": "# LlamaIndex Llms Integration: llamafile\n\n## Setup Steps\n\n### 1. Download a LlamaFile\n\nUse the following command to download a LlamaFile from Hugging Face:\n\n```bash\nwget https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile\n```\n\n### 2. Make the File Executable\n\nOn Unix-like systems, run the following command:\n\n```bash\nchmod +x TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile\n```\n\nFor Windows, simply rename the file to end with `.exe`.\n\n### 3. Start the Model Server\n\nRun the following command to start the model server, which will listen on `http://localhost:8080` by default:\n\n```bash\n./TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile --server --nobrowser --embedding\n```\n\n## Using LlamaIndex\n\nIf you are using Google Colab or want to interact with LlamaIndex, you will need to install the necessary packages:\n\n```bash\n%pip install llama-index-llms-llamafile\n!pip install llama-index\n```\n\n### Import Required Libraries\n\n```python\nfrom llama_index.llms.llamafile import Llamafile\nfrom llama_index.core.llms import ChatMessage\n```\n\n### Initialize the LLM\n\nCreate an instance of the LlamaFile LLM:\n\n```python\nllm = Llamafile(temperature=0, seed=0)\n```\n\n### Generate Completions\n\nTo generate a completion for a prompt, use the `complete` method:\n\n```python\nresp = llm.complete(\"Who is Octavia Butler?\")\nprint(resp)\n```\n\n### Call Chat with a List of Messages\n\nYou can also interact with the LLM using a list of messages:\n\n```python\nmessages = [\n    ChatMessage(\n        role=\"system\",\n        content=\"Pretend you are a pirate with a colorful personality.\",\n    ),\n    ChatMessage(role=\"user\", content=\"What is your name?\"),\n]\nresp = llm.chat(messages)\nprint(resp)\n```\n\n### Streaming Responses\n\nTo use the streaming capabilities, you can call the `stream_complete` method:\n\n```python\nresponse = llm.stream_complete(\"Who is Octavia Butler?\")\nfor r in response:\n    print(r.delta, end=\"\")\n```\n\nYou can also stream chat responses:\n\n```python\nmessages = [\n    ChatMessage(\n        role=\"system\",\n        content=\"Pretend you are a pirate with a colorful personality.\",\n    ),\n    ChatMessage(role=\"user\", content=\"What is your name?\"),\n]\nresp = llm.stream_chat(messages)\nfor r in resp:\n    print(r.delta, end=\"\")\n```\n\n### LLM Implementation example\n\nhttps://docs.llamaindex.ai/en/stable/examples/llm/llamafile/\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index llms llamafile integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a70298782fd7982b69fe5d729397a75d42a2e499001f011093bb3ff30b6784ce",
                "md5": "ca5393e0f688b0514c59080a0b731cd6",
                "sha256": "fab8acfaebbdfbef41433fa3f40a8ff358a15ef14bbb50bc7ed0a7134602c6b5"
            },
            "downloads": -1,
            "filename": "llama_index_llms_llamafile-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ca5393e0f688b0514c59080a0b731cd6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 5459,
            "upload_time": "2025-07-30T20:54:14",
            "upload_time_iso_8601": "2025-07-30T20:54:14.739643Z",
            "url": "https://files.pythonhosted.org/packages/a7/02/98782fd7982b69fe5d729397a75d42a2e499001f011093bb3ff30b6784ce/llama_index_llms_llamafile-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dc835f23a0a0daf78c63c1648a800b268a936057f54ae678840139697eb24c51",
                "md5": "e1cd2afc29a1fd9f6bf143918b043479",
                "sha256": "91dabf1f0620d2edb2215fb2833eb4ee2e9a64c7c927a5c7ff87cac90afbafd8"
            },
            "downloads": -1,
            "filename": "llama_index_llms_llamafile-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e1cd2afc29a1fd9f6bf143918b043479",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 5816,
            "upload_time": "2025-07-30T20:54:15",
            "upload_time_iso_8601": "2025-07-30T20:54:15.630425Z",
            "url": "https://files.pythonhosted.org/packages/dc/83/5f23a0a0daf78c63c1648a800b268a936057f54ae678840139697eb24c51/llama_index_llms_llamafile-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 20:54:15",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-llms-llamafile"
}
        
Elapsed time: 2.83403s