llama-index-llms-ollama


Namellama-index-llms-ollama JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
Summaryllama-index llms ollama integration
upload_time2024-12-08 17:58:11
maintainerNone
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex Llms Integration: Ollama

## Installation

To install the required package, run:

```bash
pip install llama-index-llms-ollama
```

## Setup

1. Follow the [Ollama README](https://ollama.com) to set up and run a local Ollama instance.
2. When the Ollama app is running on your local machine, it will serve all of your local models on `localhost:11434`.
3. Select your model when creating the `Ollama` instance by specifying `model=":"`.
4. You can increase the default timeout (30 seconds) by setting `Ollama(..., request_timeout=300.0)`.
5. If you set `llm = Ollama(..., model="<model family>")` without a version, it will automatically look for the latest version.

## Usage

### Initialize Ollama

```python
from llama_index.llms.ollama import Ollama

llm = Ollama(model="llama3.1:latest", request_timeout=120.0)
```

### Generate Completions

To generate a text completion for a prompt, use the `complete` method:

```python
resp = llm.complete("Who is Paul Graham?")
print(resp)
```

### Chat Responses

To send a chat message and receive a response, create a list of `ChatMessage` instances and use the `chat` method:

```python
from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)
```

### Streaming Responses

#### Stream Complete

To stream responses for a prompt, use the `stream_complete` method:

```python
response = llm.stream_complete("Who is Paul Graham?")
for r in response:
    print(r.delta, end="")
```

#### Stream Chat

To stream chat responses, use the `stream_chat` method:

```python
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")
```

### JSON Mode

Ollama supports a JSON mode to ensure all responses are valid JSON, which is useful for tools that need to parse structured outputs:

```python
llm = Ollama(model="llama3.1:latest", request_timeout=120.0, json_mode=True)
response = llm.complete(
    "Who is Paul Graham? Output as a structured JSON object."
)
print(str(response))
```

### Structured Outputs

You can attach a Pydantic class to the LLM to ensure structured outputs:

```python
from llama_index.core.bridge.pydantic import BaseModel
from llama_index.core.tools import FunctionTool


class Song(BaseModel):
    """A song with name and artist."""

    name: str
    artist: str


llm = Ollama(model="llama3.1:latest", request_timeout=120.0)
sllm = llm.as_structured_llm(Song)

response = sllm.chat([ChatMessage(role="user", content="Name a random song!")])
print(
    response.message.content
)  # e.g., {"name": "Yesterday", "artist": "The Beatles"}
```

### Asynchronous Chat

You can also use asynchronous chat:

```python
response = await sllm.achat(
    [ChatMessage(role="user", content="Name a random song!")]
)
print(response.message.content)
```

### LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/ollama/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-llms-ollama",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/e2/97/0c2eca7558feed745ebe0dd8a9106633f7f67b2da7324326d7894f40621f/llama_index_llms_ollama-0.5.0.tar.gz",
    "platform": null,
    "description": "# LlamaIndex Llms Integration: Ollama\n\n## Installation\n\nTo install the required package, run:\n\n```bash\npip install llama-index-llms-ollama\n```\n\n## Setup\n\n1. Follow the [Ollama README](https://ollama.com) to set up and run a local Ollama instance.\n2. When the Ollama app is running on your local machine, it will serve all of your local models on `localhost:11434`.\n3. Select your model when creating the `Ollama` instance by specifying `model=\":\"`.\n4. You can increase the default timeout (30 seconds) by setting `Ollama(..., request_timeout=300.0)`.\n5. If you set `llm = Ollama(..., model=\"<model family>\")` without a version, it will automatically look for the latest version.\n\n## Usage\n\n### Initialize Ollama\n\n```python\nfrom llama_index.llms.ollama import Ollama\n\nllm = Ollama(model=\"llama3.1:latest\", request_timeout=120.0)\n```\n\n### Generate Completions\n\nTo generate a text completion for a prompt, use the `complete` method:\n\n```python\nresp = llm.complete(\"Who is Paul Graham?\")\nprint(resp)\n```\n\n### Chat Responses\n\nTo send a chat message and receive a response, create a list of `ChatMessage` instances and use the `chat` method:\n\n```python\nfrom llama_index.core.llms import ChatMessage\n\nmessages = [\n    ChatMessage(\n        role=\"system\", content=\"You are a pirate with a colorful personality.\"\n    ),\n    ChatMessage(role=\"user\", content=\"What is your name?\"),\n]\nresp = llm.chat(messages)\nprint(resp)\n```\n\n### Streaming Responses\n\n#### Stream Complete\n\nTo stream responses for a prompt, use the `stream_complete` method:\n\n```python\nresponse = llm.stream_complete(\"Who is Paul Graham?\")\nfor r in response:\n    print(r.delta, end=\"\")\n```\n\n#### Stream Chat\n\nTo stream chat responses, use the `stream_chat` method:\n\n```python\nmessages = [\n    ChatMessage(\n        role=\"system\", content=\"You are a pirate with a colorful personality.\"\n    ),\n    ChatMessage(role=\"user\", content=\"What is your name?\"),\n]\nresp = llm.stream_chat(messages)\nfor r in resp:\n    print(r.delta, end=\"\")\n```\n\n### JSON Mode\n\nOllama supports a JSON mode to ensure all responses are valid JSON, which is useful for tools that need to parse structured outputs:\n\n```python\nllm = Ollama(model=\"llama3.1:latest\", request_timeout=120.0, json_mode=True)\nresponse = llm.complete(\n    \"Who is Paul Graham? Output as a structured JSON object.\"\n)\nprint(str(response))\n```\n\n### Structured Outputs\n\nYou can attach a Pydantic class to the LLM to ensure structured outputs:\n\n```python\nfrom llama_index.core.bridge.pydantic import BaseModel\nfrom llama_index.core.tools import FunctionTool\n\n\nclass Song(BaseModel):\n    \"\"\"A song with name and artist.\"\"\"\n\n    name: str\n    artist: str\n\n\nllm = Ollama(model=\"llama3.1:latest\", request_timeout=120.0)\nsllm = llm.as_structured_llm(Song)\n\nresponse = sllm.chat([ChatMessage(role=\"user\", content=\"Name a random song!\")])\nprint(\n    response.message.content\n)  # e.g., {\"name\": \"Yesterday\", \"artist\": \"The Beatles\"}\n```\n\n### Asynchronous Chat\n\nYou can also use asynchronous chat:\n\n```python\nresponse = await sllm.achat(\n    [ChatMessage(role=\"user\", content=\"Name a random song!\")]\n)\nprint(response.message.content)\n```\n\n### LLM Implementation example\n\nhttps://docs.llamaindex.ai/en/stable/examples/llm/ollama/\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index llms ollama integration",
    "version": "0.5.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d38e991b45ca83b453c779dffeab2f38c1707f21b51edb10cfa4b15108cf8309",
                "md5": "f162457a88853661e55acceb15bb7bf2",
                "sha256": "f5976865a60264e9e3c9a5625971235860cc85b03d437f9cff4d2bb8ca4eb9c8"
            },
            "downloads": -1,
            "filename": "llama_index_llms_ollama-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f162457a88853661e55acceb15bb7bf2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 6665,
            "upload_time": "2024-12-08T17:58:10",
            "upload_time_iso_8601": "2024-12-08T17:58:10.766518Z",
            "url": "https://files.pythonhosted.org/packages/d3/8e/991b45ca83b453c779dffeab2f38c1707f21b51edb10cfa4b15108cf8309/llama_index_llms_ollama-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e2970c2eca7558feed745ebe0dd8a9106633f7f67b2da7324326d7894f40621f",
                "md5": "143b49bb583d56fc156d208c2deb67de",
                "sha256": "f3c0da04f854079033ee3c1b111e097456005b9a3867ed4bb49b8d28e4a0f336"
            },
            "downloads": -1,
            "filename": "llama_index_llms_ollama-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "143b49bb583d56fc156d208c2deb67de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 7083,
            "upload_time": "2024-12-08T17:58:11",
            "upload_time_iso_8601": "2024-12-08T17:58:11.714110Z",
            "url": "https://files.pythonhosted.org/packages/e2/97/0c2eca7558feed745ebe0dd8a9106633f7f67b2da7324326d7894f40621f/llama_index_llms_ollama-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-08 17:58:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-llms-ollama"
}
        
Elapsed time: 0.63868s