llama-index-llms-openllm


Namellama-index-llms-openllm JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index llms openllm integration
upload_time2024-11-18 01:38:01
maintainerNone
docs_urlNone
authorAaron Pham
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaIndex LLM Integration: OpenLLM

## Installation

To install the required packages, run:

```bash
%pip install llama-index-llms-openllm
!pip install llama-index
```

## Setup

### Initialize OpenLLM

First, import the necessary libraries and set up your `OpenLLM` instance. Replace `my-model`, `https://hostname.com/v1`, and `na` with your model name, API base URL, and API key, respectively:

```python
import os
from typing import List, Optional
from llama_index.llms.openllm import OpenLLM
from llama_index.core.llms import ChatMessage

llm = OpenLLM(
    model="my-model", api_base="https://hostname.com/v1", api_key="na"
)
```

## Generate Completions

To generate a completion, use the `complete` method:

```python
completion_response = llm.complete("To infinity, and")
print(completion_response)
```

### Stream Completions

You can also stream completions using the `stream_complete` method:

```python
async for it in llm.stream_complete(
    "The meaning of time is", max_new_tokens=128
):
    print(it, end="", flush=True)
```

## Chat Functionality

OpenLLM supports chat APIs, allowing you to handle conversation-like interactions. Here’s how to use it:

### Synchronous Chat

You can perform a synchronous chat by constructing a list of `ChatMessage` instances:

```python
from llama_index.core.llms import ChatMessage

chat_messages = [
    ChatMessage(role="system", content="You are acting as Ernest Hemmingway."),
    ChatMessage(role="user", content="Hi there!"),
    ChatMessage(role="assistant", content="Yes?"),
    ChatMessage(role="user", content="What is the meaning of life?"),
]

for it in llm.chat(chat_messages):
    print(it.message.content, flush=True, end="")
```

### Asynchronous Chat

To perform an asynchronous chat, use the `astream_chat` method:

```python
async for it in llm.astream_chat(chat_messages):
    print(it.message.content, flush=True, end="")
```

### LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openllm/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-llms-openllm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Aaron Pham",
    "author_email": "aarnphm@bentoml.com",
    "download_url": "https://files.pythonhosted.org/packages/94/a5/2cc1ce926918f0a1f05c842fe2fd2d712a1c09f1e4860f9267d716b6afd7/llama_index_llms_openllm-0.4.0.tar.gz",
    "platform": null,
    "description": "# LlamaIndex LLM Integration: OpenLLM\n\n## Installation\n\nTo install the required packages, run:\n\n```bash\n%pip install llama-index-llms-openllm\n!pip install llama-index\n```\n\n## Setup\n\n### Initialize OpenLLM\n\nFirst, import the necessary libraries and set up your `OpenLLM` instance. Replace `my-model`, `https://hostname.com/v1`, and `na` with your model name, API base URL, and API key, respectively:\n\n```python\nimport os\nfrom typing import List, Optional\nfrom llama_index.llms.openllm import OpenLLM\nfrom llama_index.core.llms import ChatMessage\n\nllm = OpenLLM(\n    model=\"my-model\", api_base=\"https://hostname.com/v1\", api_key=\"na\"\n)\n```\n\n## Generate Completions\n\nTo generate a completion, use the `complete` method:\n\n```python\ncompletion_response = llm.complete(\"To infinity, and\")\nprint(completion_response)\n```\n\n### Stream Completions\n\nYou can also stream completions using the `stream_complete` method:\n\n```python\nasync for it in llm.stream_complete(\n    \"The meaning of time is\", max_new_tokens=128\n):\n    print(it, end=\"\", flush=True)\n```\n\n## Chat Functionality\n\nOpenLLM supports chat APIs, allowing you to handle conversation-like interactions. Here\u2019s how to use it:\n\n### Synchronous Chat\n\nYou can perform a synchronous chat by constructing a list of `ChatMessage` instances:\n\n```python\nfrom llama_index.core.llms import ChatMessage\n\nchat_messages = [\n    ChatMessage(role=\"system\", content=\"You are acting as Ernest Hemmingway.\"),\n    ChatMessage(role=\"user\", content=\"Hi there!\"),\n    ChatMessage(role=\"assistant\", content=\"Yes?\"),\n    ChatMessage(role=\"user\", content=\"What is the meaning of life?\"),\n]\n\nfor it in llm.chat(chat_messages):\n    print(it.message.content, flush=True, end=\"\")\n```\n\n### Asynchronous Chat\n\nTo perform an asynchronous chat, use the `astream_chat` method:\n\n```python\nasync for it in llm.astream_chat(chat_messages):\n    print(it.message.content, flush=True, end=\"\")\n```\n\n### LLM Implementation example\n\nhttps://docs.llamaindex.ai/en/stable/examples/llm/openllm/\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index llms openllm integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "09192f5bc90a41b23bb377d9836cf793c0fd7233bf59eb054688e87790e786a4",
                "md5": "d58a2ae8acafee9f0d9450b9591f7b2e",
                "sha256": "7f4772670c7950218e6341141937078e2dddf4fa321a302e3598467d75f621a2"
            },
            "downloads": -1,
            "filename": "llama_index_llms_openllm-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d58a2ae8acafee9f0d9450b9591f7b2e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 2709,
            "upload_time": "2024-11-18T01:38:00",
            "upload_time_iso_8601": "2024-11-18T01:38:00.309647Z",
            "url": "https://files.pythonhosted.org/packages/09/19/2f5bc90a41b23bb377d9836cf793c0fd7233bf59eb054688e87790e786a4/llama_index_llms_openllm-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "94a52cc1ce926918f0a1f05c842fe2fd2d712a1c09f1e4860f9267d716b6afd7",
                "md5": "17bf156a2dba73aca693083786cb928b",
                "sha256": "133955f3ed7c80c34766c39b9b084b04b18616c5c70e6d75ba604d668eadfc20"
            },
            "downloads": -1,
            "filename": "llama_index_llms_openllm-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "17bf156a2dba73aca693083786cb928b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 2482,
            "upload_time": "2024-11-18T01:38:01",
            "upload_time_iso_8601": "2024-11-18T01:38:01.868220Z",
            "url": "https://files.pythonhosted.org/packages/94/a5/2cc1ce926918f0a1f05c842fe2fd2d712a1c09f1e4860f9267d716b6afd7/llama_index_llms_openllm-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 01:38:01",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-llms-openllm"
}
        
Elapsed time: 0.52358s