Name | llama-index-llms-perplexity JSON |
Version |
0.3.1
JSON |
| download |
home_page | None |
Summary | llama-index llms perplexity integration |
upload_time | 2024-11-25 21:06:22 |
maintainer | None |
docs_url | None |
author | Your Name |
requires_python | <4.0,>=3.9 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# LlamaIndex Llms Integration: Perplexity
## Installation
To install the required packages, run:
```bash
%pip install llama-index-llms-perplexity
!pip install llama-index
```
## Setup
### Import Libraries and Configure API Key
Import the necessary libraries and set your Perplexity API key:
```python
from llama_index.llms.perplexity import Perplexity
pplx_api_key = "your-perplexity-api-key" # Replace with your actual API key
```
### Initialize the Perplexity LLM
Create an instance of the Perplexity LLM with your API key and desired model settings:
```python
llm = Perplexity(
api_key=pplx_api_key, model="mistral-7b-instruct", temperature=0.5
)
```
## Chat Example
### Sending a Chat Message
You can send a chat message using the `chat` method. Here’s how to do that:
```python
from llama_index.core.llms import ChatMessage
messages_dict = [
{"role": "system", "content": "Be precise and concise."},
{"role": "user", "content": "Tell me 5 sentences about Perplexity."},
]
messages = [ChatMessage(**msg) for msg in messages_dict]
# Get response from the model
response = llm.chat(messages)
print(response)
```
### Async Chat
To send messages asynchronously, you can use the `achat` method:
```python
response = await llm.achat(messages)
print(response)
```
### Stream Chat
For streaming responses, you can use the `stream_chat` method:
```python
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
```
### Async Stream Chat
To stream responses asynchronously, use the `astream_chat` method:
```python
resp = await llm.astream_chat(messages)
async for delta in resp:
print(delta.delta, end="")
```
### LLM Implementation example
https://docs.llamaindex.ai/en/stable/examples/llm/perplexity/
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-llms-perplexity",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/05/87/d77d7fdc0123e8f9c7efa6e273c91121c63baf9a50ec996ab274e8c3009c/llama_index_llms_perplexity-0.3.1.tar.gz",
"platform": null,
"description": "# LlamaIndex Llms Integration: Perplexity\n\n## Installation\n\nTo install the required packages, run:\n\n```bash\n%pip install llama-index-llms-perplexity\n!pip install llama-index\n```\n\n## Setup\n\n### Import Libraries and Configure API Key\n\nImport the necessary libraries and set your Perplexity API key:\n\n```python\nfrom llama_index.llms.perplexity import Perplexity\n\npplx_api_key = \"your-perplexity-api-key\" # Replace with your actual API key\n```\n\n### Initialize the Perplexity LLM\n\nCreate an instance of the Perplexity LLM with your API key and desired model settings:\n\n```python\nllm = Perplexity(\n api_key=pplx_api_key, model=\"mistral-7b-instruct\", temperature=0.5\n)\n```\n\n## Chat Example\n\n### Sending a Chat Message\n\nYou can send a chat message using the `chat` method. Here\u2019s how to do that:\n\n```python\nfrom llama_index.core.llms import ChatMessage\n\nmessages_dict = [\n {\"role\": \"system\", \"content\": \"Be precise and concise.\"},\n {\"role\": \"user\", \"content\": \"Tell me 5 sentences about Perplexity.\"},\n]\n\nmessages = [ChatMessage(**msg) for msg in messages_dict]\n\n# Get response from the model\nresponse = llm.chat(messages)\nprint(response)\n```\n\n### Async Chat\n\nTo send messages asynchronously, you can use the `achat` method:\n\n```python\nresponse = await llm.achat(messages)\nprint(response)\n```\n\n### Stream Chat\n\nFor streaming responses, you can use the `stream_chat` method:\n\n```python\nresp = llm.stream_chat(messages)\nfor r in resp:\n print(r.delta, end=\"\")\n```\n\n### Async Stream Chat\n\nTo stream responses asynchronously, use the `astream_chat` method:\n\n```python\nresp = await llm.astream_chat(messages)\nasync for delta in resp:\n print(delta.delta, end=\"\")\n```\n\n### LLM Implementation example\n\nhttps://docs.llamaindex.ai/en/stable/examples/llm/perplexity/\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index llms perplexity integration",
"version": "0.3.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dbd9781b5b13a8925bd63304bd3f362cfe22d05436a65c41c90e24b9b7d1430a",
"md5": "41f49416932072320cf0a979b57083c1",
"sha256": "e1d442802845358bcc76cfec6270763ccbcbd3b99a37618fed1e3044a20cbe7a"
},
"downloads": -1,
"filename": "llama_index_llms_perplexity-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "41f49416932072320cf0a979b57083c1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4883,
"upload_time": "2024-11-25T21:06:20",
"upload_time_iso_8601": "2024-11-25T21:06:20.594737Z",
"url": "https://files.pythonhosted.org/packages/db/d9/781b5b13a8925bd63304bd3f362cfe22d05436a65c41c90e24b9b7d1430a/llama_index_llms_perplexity-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0587d77d7fdc0123e8f9c7efa6e273c91121c63baf9a50ec996ab274e8c3009c",
"md5": "5ac551e14c20c7222d714a22225fd8e2",
"sha256": "12d85b8533544a43734df79749582d2857b607bb2ff617f4432ecfd3759a6938"
},
"downloads": -1,
"filename": "llama_index_llms_perplexity-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "5ac551e14c20c7222d714a22225fd8e2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4401,
"upload_time": "2024-11-25T21:06:22",
"upload_time_iso_8601": "2024-11-25T21:06:22.145634Z",
"url": "https://files.pythonhosted.org/packages/05/87/d77d7fdc0123e8f9c7efa6e273c91121c63baf9a50ec996ab274e8c3009c/llama_index_llms_perplexity-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-25 21:06:22",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-llms-perplexity"
}