# Amazon Product Extraction Pack
This LlamaPack provides an example of our Amazon product extraction pack.
It loads in a website URL, screenshots the page. Then we use OpenAI GPT-4V + prompt engineering to extract the screenshot into a structured JSON output.
Check out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/amazon_product_extraction/product_extraction.ipynb).
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack AmazonProductExtractionPack --download-dir ./amazon_product_extraction_pack
```
You can then inspect the files at `./amazon_product_extraction_pack` and use them as a template for your own project.
## Code Usage
You can download the pack to a the `./amazon_product_extraction_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
AmazonProductExtractionPack = download_llama_pack(
"AmazonProductExtractionPack", "./amazon_product_extraction_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./amazon_product_extraction_pack`.
Then, you can set up the pack like so:
```python
# create the pack
# get documents from any data loader
amazon_product_extraction_pack = SentenceWindowRetrieverPack(
amazon_product_page,
)
```
The `run()` function is a light wrapper around `program()`.
```python
response = amazon_product_extraction_pack.run()
display(response.dict())
```
You can also use modules individually.
```python
# get pydantic program
program = amazon_product_extraction_pack.openai_program
# get multi-modal LLM
mm_llm = amazon_product_extraction_pack.openai_mm_llm
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-amazon-product-extraction",
"maintainer": "jerryjliu",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "amazon, extraction, product",
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/26/cd/d2f80c63acc331ffb5cc8ea246468262b5cff4235853ecd2c7fa47b96137/llama_index_packs_amazon_product_extraction-0.3.0.tar.gz",
"platform": null,
"description": "# Amazon Product Extraction Pack\n\nThis LlamaPack provides an example of our Amazon product extraction pack.\n\nIt loads in a website URL, screenshots the page. Then we use OpenAI GPT-4V + prompt engineering to extract the screenshot into a structured JSON output.\n\nCheck out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/amazon_product_extraction/product_extraction.ipynb).\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack AmazonProductExtractionPack --download-dir ./amazon_product_extraction_pack\n```\n\nYou can then inspect the files at `./amazon_product_extraction_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./amazon_product_extraction_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nAmazonProductExtractionPack = download_llama_pack(\n \"AmazonProductExtractionPack\", \"./amazon_product_extraction_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./amazon_product_extraction_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# create the pack\n# get documents from any data loader\namazon_product_extraction_pack = SentenceWindowRetrieverPack(\n amazon_product_page,\n)\n```\n\nThe `run()` function is a light wrapper around `program()`.\n\n```python\nresponse = amazon_product_extraction_pack.run()\ndisplay(response.dict())\n```\n\nYou can also use modules individually.\n\n```python\n# get pydantic program\nprogram = amazon_product_extraction_pack.openai_program\n\n# get multi-modal LLM\nmm_llm = amazon_product_extraction_pack.openai_mm_llm\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index packs amazon_product_extraction integration",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [
"amazon",
" extraction",
" product"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7e978cb8c3e5ff3d635639237b23930b54ccd7878efe09b63ff9c0020b8cf9d8",
"md5": "c8942daecb695266a3b47e6ec76e1578",
"sha256": "61164a98ba35ffaf43f2d33d542ade2cd417aa4470c6ceea0dc031a7998ff5ba"
},
"downloads": -1,
"filename": "llama_index_packs_amazon_product_extraction-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c8942daecb695266a3b47e6ec76e1578",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 3797,
"upload_time": "2024-11-18T02:01:54",
"upload_time_iso_8601": "2024-11-18T02:01:54.869651Z",
"url": "https://files.pythonhosted.org/packages/7e/97/8cb8c3e5ff3d635639237b23930b54ccd7878efe09b63ff9c0020b8cf9d8/llama_index_packs_amazon_product_extraction-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "26cdd2f80c63acc331ffb5cc8ea246468262b5cff4235853ecd2c7fa47b96137",
"md5": "617fee4cf2c9f3aaae85eed61c4a8b2a",
"sha256": "a00854fa0c2dafb8cab9b48b60e5e39a0f840171cf3c5b15b626a615d1a2d14b"
},
"downloads": -1,
"filename": "llama_index_packs_amazon_product_extraction-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "617fee4cf2c9f3aaae85eed61c4a8b2a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 3353,
"upload_time": "2024-11-18T02:01:55",
"upload_time_iso_8601": "2024-11-18T02:01:55.709063Z",
"url": "https://files.pythonhosted.org/packages/26/cd/d2f80c63acc331ffb5cc8ea246468262b5cff4235853ecd2c7fa47b96137/llama_index_packs_amazon_product_extraction-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 02:01:55",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-amazon-product-extraction"
}