# Amazon Product Extraction Pack
This LlamaPack provides an example of our Amazon product extraction pack.
It loads in a website URL, screenshots the page. Then we use OpenAI GPT-4V + prompt engineering to extract the screenshot into a structured JSON output.
Check out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/amazon_product_extraction/product_extraction.ipynb).
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack AmazonProductExtractionPack --download-dir ./amazon_product_extraction_pack
```
You can then inspect the files at `./amazon_product_extraction_pack` and use them as a template for your own project.
## Code Usage
You can download the pack to a the `./amazon_product_extraction_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
AmazonProductExtractionPack = download_llama_pack(
"AmazonProductExtractionPack", "./amazon_product_extraction_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./amazon_product_extraction_pack`.
Then, you can set up the pack like so:
```python
# create the pack
# get documents from any data loader
amazon_product_extraction_pack = SentenceWindowRetrieverPack(
amazon_product_page,
)
```
The `run()` function is a light wrapper around `program()`.
```python
response = amazon_product_extraction_pack.run()
display(response.dict())
```
You can also use modules individually.
```python
# get pydantic program
program = amazon_product_extraction_pack.openai_program
# get multi-modal LLM
mm_llm = amazon_product_extraction_pack.openai_mm_llm
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-amazon-product-extraction",
"maintainer": "jerryjliu",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "amazon, extraction, product",
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/94/df/3b8e6be2d93b9b83cda3ebd4762dc5a9638b4896b6df5e1e7f598d610556/llama_index_packs_amazon_product_extraction-0.4.0.tar.gz",
"platform": null,
"description": "# Amazon Product Extraction Pack\n\nThis LlamaPack provides an example of our Amazon product extraction pack.\n\nIt loads in a website URL, screenshots the page. Then we use OpenAI GPT-4V + prompt engineering to extract the screenshot into a structured JSON output.\n\nCheck out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/amazon_product_extraction/product_extraction.ipynb).\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack AmazonProductExtractionPack --download-dir ./amazon_product_extraction_pack\n```\n\nYou can then inspect the files at `./amazon_product_extraction_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./amazon_product_extraction_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nAmazonProductExtractionPack = download_llama_pack(\n \"AmazonProductExtractionPack\", \"./amazon_product_extraction_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./amazon_product_extraction_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# create the pack\n# get documents from any data loader\namazon_product_extraction_pack = SentenceWindowRetrieverPack(\n amazon_product_page,\n)\n```\n\nThe `run()` function is a light wrapper around `program()`.\n\n```python\nresponse = amazon_product_extraction_pack.run()\ndisplay(response.dict())\n```\n\nYou can also use modules individually.\n\n```python\n# get pydantic program\nprogram = amazon_product_extraction_pack.openai_program\n\n# get multi-modal LLM\nmm_llm = amazon_product_extraction_pack.openai_mm_llm\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index packs amazon_product_extraction integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [
"amazon",
" extraction",
" product"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "62472a9e30414e2fe4cc4e871ae180a35df56cdd3e4b6457e3bdd5406fd2199e",
"md5": "c24c2bebafa033a836460f5c9b5ff140",
"sha256": "5b2df5f217ace7a440dac559132f4d60ecb21fce24ab6c375bf84a23f03d640d"
},
"downloads": -1,
"filename": "llama_index_packs_amazon_product_extraction-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c24c2bebafa033a836460f5c9b5ff140",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4649,
"upload_time": "2025-07-31T00:36:35",
"upload_time_iso_8601": "2025-07-31T00:36:35.724397Z",
"url": "https://files.pythonhosted.org/packages/62/47/2a9e30414e2fe4cc4e871ae180a35df56cdd3e4b6457e3bdd5406fd2199e/llama_index_packs_amazon_product_extraction-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "94df3b8e6be2d93b9b83cda3ebd4762dc5a9638b4896b6df5e1e7f598d610556",
"md5": "102d728ff46b0cc9905ee4e727d5c48a",
"sha256": "ca5c0e5d87975b0b92881822dbfffee84623e7cd044f469d01cf8c4a80d7cca6"
},
"downloads": -1,
"filename": "llama_index_packs_amazon_product_extraction-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "102d728ff46b0cc9905ee4e727d5c48a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4889,
"upload_time": "2025-07-31T00:36:36",
"upload_time_iso_8601": "2025-07-31T00:36:36.753792Z",
"url": "https://files.pythonhosted.org/packages/94/df/3b8e6be2d93b9b83cda3ebd4762dc5a9638b4896b6df5e1e7f598d610556/llama_index_packs_amazon_product_extraction-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-31 00:36:36",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-amazon-product-extraction"
}