# Chroma AutoRetrieval Pack
This LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack
```
You can then inspect the files at `./chroma_pack` and use them as a template for your own project!
## Code Usage
You can download the pack to a the `./chroma_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
ChromaAutoretrievalPack = download_llama_pack(
"ChromaAutoretrievalPack", "./chroma_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./chroma_pack`.
Then, you can set up the pack like so:
```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports Entertainment, Business, Music]"
),
),
],
)
import chromadb
client = chromadb.EphemeralClient()
nodes = [...]
# create the pack
chroma_pack = ChromaAutoretrievalPack(
collection_name="test",
vector_store_info=vector_store_index,
nodes=nodes,
client=client,
)
```
The `run()` function is a light wrapper around `query_engine.query()`.
```python
response = chroma_pack.run("Tell me a bout a Music celebritiy.")
```
You can also use modules individually.
```python
# use the retriever
retriever = chroma_pack.retriever
nodes = retriever.retrieve("query_str")
# use the query engine
query_engine = chroma_pack.query_engine
response = query_engine.query("query_str")
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-chroma-autoretrieval",
"maintainer": "logan-markewich",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "chroma, retrieval, vector",
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/5f/27/44de2efd822a26172f5073991dcf42bade0d65c9b435a32014c90c66449c/llama_index_packs_chroma_autoretrieval-0.4.0.tar.gz",
"platform": null,
"description": "# Chroma AutoRetrieval Pack\n\nThis LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack\n```\n\nYou can then inspect the files at `./chroma_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a the `./chroma_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nChromaAutoretrievalPack = download_llama_pack(\n \"ChromaAutoretrievalPack\", \"./chroma_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./chroma_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n content_info=\"brief biography of celebrities\",\n metadata_info=[\n MetadataInfo(\n name=\"category\",\n type=\"str\",\n description=(\n \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n ),\n ),\n ],\n)\n\nimport chromadb\n\nclient = chromadb.EphemeralClient()\n\nnodes = [...]\n\n# create the pack\nchroma_pack = ChromaAutoretrievalPack(\n collection_name=\"test\",\n vector_store_info=vector_store_index,\n nodes=nodes,\n client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = chroma_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = chroma_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = chroma_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index packs chroma_autoretrieval integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [
"chroma",
" retrieval",
" vector"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "03c2a771edefe647262e0346a166dff56ac73eea58ec76a9998327112021330c",
"md5": "6ea2b3e9377cfb5aabb686eb872c98ae",
"sha256": "42009b02601c80dc5270fe5d0a795170c27787a77026f2fe6124073f13affc32"
},
"downloads": -1,
"filename": "llama_index_packs_chroma_autoretrieval-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6ea2b3e9377cfb5aabb686eb872c98ae",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 4134,
"upload_time": "2025-07-31T03:00:45",
"upload_time_iso_8601": "2025-07-31T03:00:45.550520Z",
"url": "https://files.pythonhosted.org/packages/03/c2/a771edefe647262e0346a166dff56ac73eea58ec76a9998327112021330c/llama_index_packs_chroma_autoretrieval-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5f2744de2efd822a26172f5073991dcf42bade0d65c9b435a32014c90c66449c",
"md5": "f7986a9a61a03e2b15ec75f2f217ff57",
"sha256": "1d1a7f8dfdb42581fb2ab2ee22d42da8db87adf9c4d6143b825c3fecc7bb9c8e"
},
"downloads": -1,
"filename": "llama_index_packs_chroma_autoretrieval-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "f7986a9a61a03e2b15ec75f2f217ff57",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4371,
"upload_time": "2025-07-31T03:00:46",
"upload_time_iso_8601": "2025-07-31T03:00:46.283884Z",
"url": "https://files.pythonhosted.org/packages/5f/27/44de2efd822a26172f5073991dcf42bade0d65c9b435a32014c90c66449c/llama_index_packs_chroma_autoretrieval-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-31 03:00:46",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-chroma-autoretrieval"
}