llama-index-packs-chroma-autoretrieval


Namellama-index-packs-chroma-autoretrieval JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs chroma_autoretrieval integration
upload_time2024-11-18 02:12:52
maintainerlogan-markewich
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords chroma retrieval vector
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Chroma AutoRetrieval Pack

This LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack
```

You can then inspect the files at `./chroma_pack` and use them as a template for your own project!

## Code Usage

You can download the pack to a the `./chroma_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
ChromaAutoretrievalPack = download_llama_pack(
    "ChromaAutoretrievalPack", "./chroma_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./chroma_pack`.

Then, you can set up the pack like so:

```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import chromadb

client = chromadb.EphemeralClient()

nodes = [...]

# create the pack
chroma_pack = ChromaAutoretrievalPack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = chroma_pack.run("Tell me a bout a Music celebritiy.")
```

You can also use modules individually.

```python
# use the retriever
retriever = chroma_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = chroma_pack.query_engine
response = query_engine.query("query_str")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-chroma-autoretrieval",
    "maintainer": "logan-markewich",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "chroma, retrieval, vector",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/1c/ec/00b4dfeb60e6f9bfca858233e2593044f3bf73b62137ce202eecec9824a0/llama_index_packs_chroma_autoretrieval-0.3.0.tar.gz",
    "platform": null,
    "description": "# Chroma AutoRetrieval Pack\n\nThis LlamaPack inserts your data into chroma and instantiates an auto-retriever, which will use the LLM at runtime to set metadata filtering, top-k, and query string.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack ChromaAutoretrievalPack --download-dir ./chroma_pack\n```\n\nYou can then inspect the files at `./chroma_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a the `./chroma_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nChromaAutoretrievalPack = download_llama_pack(\n    \"ChromaAutoretrievalPack\", \"./chroma_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./chroma_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n    content_info=\"brief biography of celebrities\",\n    metadata_info=[\n        MetadataInfo(\n            name=\"category\",\n            type=\"str\",\n            description=(\n                \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n            ),\n        ),\n    ],\n)\n\nimport chromadb\n\nclient = chromadb.EphemeralClient()\n\nnodes = [...]\n\n# create the pack\nchroma_pack = ChromaAutoretrievalPack(\n    collection_name=\"test\",\n    vector_store_info=vector_store_index,\n    nodes=nodes,\n    client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = chroma_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = chroma_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = chroma_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index packs chroma_autoretrieval integration",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "chroma",
        " retrieval",
        " vector"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d66f7ed6d81d659d06f7a830d46ce77378630c65d754bc0e56999f008616134b",
                "md5": "23d21d78b9bfd0495f3f11c3e3738f95",
                "sha256": "e79f09f2aa475fa73c2ded206a6de71be0d35e1ed79b203a70614f04cf55a5b3"
            },
            "downloads": -1,
            "filename": "llama_index_packs_chroma_autoretrieval-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "23d21d78b9bfd0495f3f11c3e3738f95",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 3294,
            "upload_time": "2024-11-18T02:12:51",
            "upload_time_iso_8601": "2024-11-18T02:12:51.073456Z",
            "url": "https://files.pythonhosted.org/packages/d6/6f/7ed6d81d659d06f7a830d46ce77378630c65d754bc0e56999f008616134b/llama_index_packs_chroma_autoretrieval-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1cec00b4dfeb60e6f9bfca858233e2593044f3bf73b62137ce202eecec9824a0",
                "md5": "896c5f3609dfb9297e9078f15d84cc2d",
                "sha256": "1929ca051fc02d80b727b7d14be2fee6637cc10c752fba49bea62acaeedd587e"
            },
            "downloads": -1,
            "filename": "llama_index_packs_chroma_autoretrieval-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "896c5f3609dfb9297e9078f15d84cc2d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 2930,
            "upload_time": "2024-11-18T02:12:52",
            "upload_time_iso_8601": "2024-11-18T02:12:52.552501Z",
            "url": "https://files.pythonhosted.org/packages/1c/ec/00b4dfeb60e6f9bfca858233e2593044f3bf73b62137ce202eecec9824a0/llama_index_packs_chroma_autoretrieval-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 02:12:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-chroma-autoretrieval"
}
        
Elapsed time: 0.47414s