# DeepLake DeepMemory Pack
This LlamaPack inserts your data into deeplake and instantiates a [deepmemory](https://docs.activeloop.ai/performance-features/deep-memory) retriever, which will use deepmemory during runtime to increase RAG's retrieval accuracy (recall).
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack DeepMemoryRetrieverPack --download-dir ./deepmemory_pack
```
You can then inspect the files at `./deepmemory_pack` and use them as a template for your own project!
## Code Usage
You can download the pack to a `./deepmemory_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
DeepMemoryRetriever = download_llama_pack(
"DeepMemoryRetrieverPack", "./deepmemory_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./deepmemory_pack`.
Then, you can set up the pack like so:
```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
nodes = [...]
# create the pack
deepmemory_pack = DeepMemoryRetriever(
dataset_path="llama_index",
overwrite=False,
nodes=nodes,
)
```
The `run()` function is a light wrapper around `query_engine.query()`.
```python
response = deepmemory_pack.run("Tell me a bout a Music celebritiy.")
```
You can also use modules individually.
```python
# use the retriever
retriever = deepmemory_pack.retriever
nodes = retriever.retrieve("query_str")
# use the query engine
query_engine = deepmemory_pack.query_engine
response = query_engine.query("query_str")
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-deeplake-deepmemory-retriever",
"maintainer": "AdkSarsen",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "deeplake, deepmemory, retriever",
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/01/81/aea8b5c12b07d3d1ce70ca211273147f2dc97f3ed725f17b82747d3b4857/llama_index_packs_deeplake_deepmemory_retriever-0.3.0.tar.gz",
"platform": null,
"description": "# DeepLake DeepMemory Pack\n\nThis LlamaPack inserts your data into deeplake and instantiates a [deepmemory](https://docs.activeloop.ai/performance-features/deep-memory) retriever, which will use deepmemory during runtime to increase RAG's retrieval accuracy (recall).\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack DeepMemoryRetrieverPack --download-dir ./deepmemory_pack\n```\n\nYou can then inspect the files at `./deepmemory_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a `./deepmemory_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nDeepMemoryRetriever = download_llama_pack(\n \"DeepMemoryRetrieverPack\", \"./deepmemory_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./deepmemory_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nnodes = [...]\n\n# create the pack\ndeepmemory_pack = DeepMemoryRetriever(\n dataset_path=\"llama_index\",\n overwrite=False,\n nodes=nodes,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = deepmemory_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = deepmemory_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = deepmemory_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index packs deeplake_deepmemory_retriever integration",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [
"deeplake",
" deepmemory",
" retriever"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "751832b6fed8e3b2d9111c7ae7a67b78c8adcf5ad8518a6ac0940d9c8e99cbfe",
"md5": "646348f836d6f3515bf3b318a60a544b",
"sha256": "2e8b4c2ea463d5cecbf8c740c9e3c47ac6633027796b3f55a05cb1100c1200da"
},
"downloads": -1,
"filename": "llama_index_packs_deeplake_deepmemory_retriever-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "646348f836d6f3515bf3b318a60a544b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 3310,
"upload_time": "2024-11-18T02:16:23",
"upload_time_iso_8601": "2024-11-18T02:16:23.451857Z",
"url": "https://files.pythonhosted.org/packages/75/18/32b6fed8e3b2d9111c7ae7a67b78c8adcf5ad8518a6ac0940d9c8e99cbfe/llama_index_packs_deeplake_deepmemory_retriever-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0181aea8b5c12b07d3d1ce70ca211273147f2dc97f3ed725f17b82747d3b4857",
"md5": "d97253be0fd6b93cfa22312d0909b4a0",
"sha256": "a76728e78b28b9cd19fe6d276e40ec650cc3afe4be96ceed623f2a876f96914a"
},
"downloads": -1,
"filename": "llama_index_packs_deeplake_deepmemory_retriever-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "d97253be0fd6b93cfa22312d0909b4a0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 2894,
"upload_time": "2024-11-18T02:16:25",
"upload_time_iso_8601": "2024-11-18T02:16:25.103747Z",
"url": "https://files.pythonhosted.org/packages/01/81/aea8b5c12b07d3d1ce70ca211273147f2dc97f3ed725f17b82747d3b4857/llama_index_packs_deeplake_deepmemory_retriever-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 02:16:25",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-deeplake-deepmemory-retriever"
}