llama-index-packs-deeplake-multimodal-retrieval


Namellama-index-packs-deeplake-multimodal-retrieval JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs deeplake_multimodal_retrieval integration
upload_time2025-07-31 03:03:59
maintainerAdkSarsen
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords deeplake multimodal retriever
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DeepLake DeepMemory Pack

This LlamaPack inserts your multimodal data (texts, images) into deeplake and instantiates an deeplake retriever, which will use clip for embedding images and GPT4-V during runtime.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack DeepLakeMultimodalRetrieverPack --download-dir ./deeplake_multimodal_pack
```

You can then inspect the files at `./deeplake_multimodal_pack` and use them as a template for your own project!

## Code Usage

You can download the pack to a `./deeplake_multimodal_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
DeepLakeMultimodalRetriever = download_llama_pack(
    "DeepLakeMultimodalRetrieverPack", "./deeplake_multimodal_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./deepmemory_pack`.

Then, you can set up the pack like so:

```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

# collection of image and text nodes
nodes = [...]

# create the pack
deeplake_pack = DeepLakeMultimodalRetriever(
    nodes=nodes, dataset_path="llama_index", overwrite=False
)
```

The `run()` function is a light wrapper around `SimpleMultiModalQueryEngine`.

```python
response = deeplake_pack.run("Tell me a bout a Music celebrity.")
```

You can also use modules individually.

```python
# use the retriever
retriever = deeplake_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = deeplake_pack.query_engine
response = query_engine.query("query_str")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-deeplake-multimodal-retrieval",
    "maintainer": "AdkSarsen",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "deeplake, multimodal, retriever",
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/d7/c5/005128b0558ea1c1e756d94c23b8995c297d323e86559ed03b9ec2da3cd2/llama_index_packs_deeplake_multimodal_retrieval-0.3.0.tar.gz",
    "platform": null,
    "description": "# DeepLake DeepMemory Pack\n\nThis LlamaPack inserts your multimodal data (texts, images) into deeplake and instantiates an deeplake retriever, which will use clip for embedding images and GPT4-V during runtime.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack DeepLakeMultimodalRetrieverPack --download-dir ./deeplake_multimodal_pack\n```\n\nYou can then inspect the files at `./deeplake_multimodal_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a `./deeplake_multimodal_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nDeepLakeMultimodalRetriever = download_llama_pack(\n    \"DeepLakeMultimodalRetrieverPack\", \"./deeplake_multimodal_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./deepmemory_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\n# collection of image and text nodes\nnodes = [...]\n\n# create the pack\ndeeplake_pack = DeepLakeMultimodalRetriever(\n    nodes=nodes, dataset_path=\"llama_index\", overwrite=False\n)\n```\n\nThe `run()` function is a light wrapper around `SimpleMultiModalQueryEngine`.\n\n```python\nresponse = deeplake_pack.run(\"Tell me a bout a Music celebrity.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = deeplake_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = deeplake_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index packs deeplake_multimodal_retrieval integration",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "deeplake",
        " multimodal",
        " retriever"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1eeca3ce9b899cfb9d4922b728c8608c773944d6eea631c1d84083db1d57a444",
                "md5": "93b55148441fc690a185db1945730a65",
                "sha256": "7c22f4015b50e7dce6ee20b7433ee51224bf16bd90c761ffa26bc3c315fbc336"
            },
            "downloads": -1,
            "filename": "llama_index_packs_deeplake_multimodal_retrieval-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "93b55148441fc690a185db1945730a65",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 4239,
            "upload_time": "2025-07-31T03:03:58",
            "upload_time_iso_8601": "2025-07-31T03:03:58.588467Z",
            "url": "https://files.pythonhosted.org/packages/1e/ec/a3ce9b899cfb9d4922b728c8608c773944d6eea631c1d84083db1d57a444/llama_index_packs_deeplake_multimodal_retrieval-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d7c5005128b0558ea1c1e756d94c23b8995c297d323e86559ed03b9ec2da3cd2",
                "md5": "efa2c509e5b4f59bc21d22d34a0dbead",
                "sha256": "4bbcda3a6df028c3a897ecfe1d1ef83a83faf76f7bc428db736ed72445cd385e"
            },
            "downloads": -1,
            "filename": "llama_index_packs_deeplake_multimodal_retrieval-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "efa2c509e5b4f59bc21d22d34a0dbead",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4405,
            "upload_time": "2025-07-31T03:03:59",
            "upload_time_iso_8601": "2025-07-31T03:03:59.609716Z",
            "url": "https://files.pythonhosted.org/packages/d7/c5/005128b0558ea1c1e756d94c23b8995c297d323e86559ed03b9ec2da3cd2/llama_index_packs_deeplake_multimodal_retrieval-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-31 03:03:59",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-deeplake-multimodal-retrieval"
}
        
Elapsed time: 1.60352s