llama-index-packs-llama-dataset-metadata


Namellama-index-packs-llama-dataset-metadata JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs llama_dataset_metadata integration
upload_time2024-11-17 22:43:11
maintainernerdai
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords evaluation llamadataset rag submission
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LlamaDataset Metadata Pack

As part of the `LlamaDataset` submission package into [llamahub](https://llamahub.ai),
two metadata files are required, namely: `card.json` and `README.md`. This pack
creates these two files and saves them to disk to help expedite the submission
process.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack
```

You can then inspect the files at `./llama_dataset_metadata_pack` and use them as a template for your own project!

## Code Usage

You can download the pack to the `./llama_dataset_metadata_pack` directory through python
code as well. The sample script below demonstrates how to construct `LlamaDatasetMetadataPack`
using a `LabelledRagDataset` downloaded from `llama-hub` and a simple RAG pipeline
built off of its source documents.

```python
from llama_index.core.llama_pack import download_llama_pack

# Download and install dependencies
LlamaDatasetMetadataPack = download_llama_pack(
    "LlamaDatasetMetadataPack", "./llama_dataset_metadata_pack"
)

# construction requires a query_engine, a rag_dataset, and optionally a judge_llm
llama_dataset_metadata_pack = LlamaDatasetMetadataPack()

# create and save `card.json` and `README.md` to disk
dataset_description = (
    "A labelled RAG dataset based off an essay by Paul Graham, consisting of "
    "queries, reference answers, and reference contexts."
)

llama_dataset_metadata_pack.run(
    name="Paul Graham Essay Dataset",
    description=dataset_description,
    rag_dataset=rag_dataset,  # defined earlier not shown here
    index=index,  # defined earlier not shown here
    benchmark_df=benchmark_df,  # defined earlier not shown here
    baseline_name="llamaindex",
)
```

NOTE: this pack should be used only after performing a RAG evaluation (i.e., by
using `RagEvaluatorPack` on a `LabelledRagDataset`). In the code snippet above,
`index`, `rag_dataset`, and `benchmark_df` are all objects that you'd expect to
have only after performing the RAG evaluation as mention in the previous sentence.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-llama-dataset-metadata",
    "maintainer": "nerdai",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "evaluation, llamadataset, rag, submission",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/96/20/5e46995715657e292a8e233c0db91d939ae5099243c7071d575a5ed9c86b/llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz",
    "platform": null,
    "description": "# LlamaDataset Metadata Pack\n\nAs part of the `LlamaDataset` submission package into [llamahub](https://llamahub.ai),\ntwo metadata files are required, namely: `card.json` and `README.md`. This pack\ncreates these two files and saves them to disk to help expedite the submission\nprocess.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack LlamaDatasetMetadataPack --download-dir ./llama_dataset_metadata_pack\n```\n\nYou can then inspect the files at `./llama_dataset_metadata_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to the `./llama_dataset_metadata_pack` directory through python\ncode as well. The sample script below demonstrates how to construct `LlamaDatasetMetadataPack`\nusing a `LabelledRagDataset` downloaded from `llama-hub` and a simple RAG pipeline\nbuilt off of its source documents.\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# Download and install dependencies\nLlamaDatasetMetadataPack = download_llama_pack(\n    \"LlamaDatasetMetadataPack\", \"./llama_dataset_metadata_pack\"\n)\n\n# construction requires a query_engine, a rag_dataset, and optionally a judge_llm\nllama_dataset_metadata_pack = LlamaDatasetMetadataPack()\n\n# create and save `card.json` and `README.md` to disk\ndataset_description = (\n    \"A labelled RAG dataset based off an essay by Paul Graham, consisting of \"\n    \"queries, reference answers, and reference contexts.\"\n)\n\nllama_dataset_metadata_pack.run(\n    name=\"Paul Graham Essay Dataset\",\n    description=dataset_description,\n    rag_dataset=rag_dataset,  # defined earlier not shown here\n    index=index,  # defined earlier not shown here\n    benchmark_df=benchmark_df,  # defined earlier not shown here\n    baseline_name=\"llamaindex\",\n)\n```\n\nNOTE: this pack should be used only after performing a RAG evaluation (i.e., by\nusing `RagEvaluatorPack` on a `LabelledRagDataset`). In the code snippet above,\n`index`, `rag_dataset`, and `benchmark_df` are all objects that you'd expect to\nhave only after performing the RAG evaluation as mention in the previous sentence.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index packs llama_dataset_metadata integration",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "evaluation",
        " llamadataset",
        " rag",
        " submission"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8806aa3f0728e9c3028b320ff4f5b0649849b543064273051719c3b95696dcb9",
                "md5": "9d049ee34bbae675dc20e972479f52fa",
                "sha256": "4aac5fa2ceed75a6782437c7d138ae98c4867aaef2b3be34c468590d2c1e48f4"
            },
            "downloads": -1,
            "filename": "llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d049ee34bbae675dc20e972479f52fa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 4767,
            "upload_time": "2024-11-17T22:43:10",
            "upload_time_iso_8601": "2024-11-17T22:43:10.646267Z",
            "url": "https://files.pythonhosted.org/packages/88/06/aa3f0728e9c3028b320ff4f5b0649849b543064273051719c3b95696dcb9/llama_index_packs_llama_dataset_metadata-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "96205e46995715657e292a8e233c0db91d939ae5099243c7071d575a5ed9c86b",
                "md5": "527c295118952a3a29a728bc91897e8c",
                "sha256": "80aec818488cff0792c6a1808e710715d5a0a484edb59b2297490ad8fc1a708f"
            },
            "downloads": -1,
            "filename": "llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "527c295118952a3a29a728bc91897e8c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4370,
            "upload_time": "2024-11-17T22:43:11",
            "upload_time_iso_8601": "2024-11-17T22:43:11.575552Z",
            "url": "https://files.pythonhosted.org/packages/96/20/5e46995715657e292a8e233c0db91d939ae5099243c7071d575a5ed9c86b/llama_index_packs_llama_dataset_metadata-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 22:43:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-llama-dataset-metadata"
}
        
Elapsed time: 0.38358s