llama-index-packs-multi-tenancy-rag


Namellama-index-packs-multi-tenancy-rag JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs multi_tenancy_rag integration
upload_time2024-11-18 01:32:31
maintainerravi03071991
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords multi multi-tenancy rag tenancy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Multi-Tenancy RAG Pack

Create a Multi-Tenancy RAG using VectorStoreIndex.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack MultiTenancyRAGPack --download-dir ./multitenancy_rag_pack
```

You can then inspect the files at `./multitenancy_rag_pack` and use them as a template for your own project.

## Code Usage

You can download the pack to a the `./multitenancy_rag_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
MultiTenancyRAGPack = download_llama_pack(
    "MultiTenancyRAGPack", "./multitenancy_rag_pack"
)

# You can use any llama-hub loader to get documents and add them to index for a user!
multitenancy_rag_pack = MultiTenancyRAGPack()
multitenancy_rag_pack.add(documents, "<user>")
```

From here, you can use the pack, or inspect and modify the pack in `./multitenancy_rag_pack`.

The `run()` function is a light wrapper around `index.as_query_engine().query()`.

```python
response = multitenancy_rag_pack.run(
    "<user query>", user="<user>", similarity_top_k=2
)
```

You can also use modules individually.

```python
# Use the index directly
index = multitenancy_rag_pack.index
query_engine = index.as_query_engine(
    filters=MetadataFilters(
        filters=[
            ExactMatchFilter(
                key="user",
                value="<user>",
            )
        ]
    )
)
retriever = index.as_retriever(
    filters=MetadataFilters(
        filters=[
            ExactMatchFilter(
                key="user",
                value="<user>",
            )
        ]
    )
)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-multi-tenancy-rag",
    "maintainer": "ravi03071991",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "multi, multi-tenancy, rag, tenancy",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/17/a6/972b39a5dc9e5e25ffe15863ca2be6b52ea19f55f260dbd5713442fea8c7/llama_index_packs_multi_tenancy_rag-0.4.0.tar.gz",
    "platform": null,
    "description": "# Multi-Tenancy RAG Pack\n\nCreate a Multi-Tenancy RAG using VectorStoreIndex.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack MultiTenancyRAGPack --download-dir ./multitenancy_rag_pack\n```\n\nYou can then inspect the files at `./multitenancy_rag_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./multitenancy_rag_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nMultiTenancyRAGPack = download_llama_pack(\n    \"MultiTenancyRAGPack\", \"./multitenancy_rag_pack\"\n)\n\n# You can use any llama-hub loader to get documents and add them to index for a user!\nmultitenancy_rag_pack = MultiTenancyRAGPack()\nmultitenancy_rag_pack.add(documents, \"<user>\")\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./multitenancy_rag_pack`.\n\nThe `run()` function is a light wrapper around `index.as_query_engine().query()`.\n\n```python\nresponse = multitenancy_rag_pack.run(\n    \"<user query>\", user=\"<user>\", similarity_top_k=2\n)\n```\n\nYou can also use modules individually.\n\n```python\n# Use the index directly\nindex = multitenancy_rag_pack.index\nquery_engine = index.as_query_engine(\n    filters=MetadataFilters(\n        filters=[\n            ExactMatchFilter(\n                key=\"user\",\n                value=\"<user>\",\n            )\n        ]\n    )\n)\nretriever = index.as_retriever(\n    filters=MetadataFilters(\n        filters=[\n            ExactMatchFilter(\n                key=\"user\",\n                value=\"<user>\",\n            )\n        ]\n    )\n)\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index packs multi_tenancy_rag integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [
        "multi",
        " multi-tenancy",
        " rag",
        " tenancy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7e55137adfc648940e4743148894e7733d0c2f558651be40123a9b0a7c0a1db5",
                "md5": "9ed2e44ada5f73baf5ca4d58182b9305",
                "sha256": "2c085cbe82533f695114d985b4affaa38ff59a79d45218e36e30c4d3c4bab48d"
            },
            "downloads": -1,
            "filename": "llama_index_packs_multi_tenancy_rag-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9ed2e44ada5f73baf5ca4d58182b9305",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 3199,
            "upload_time": "2024-11-18T01:32:29",
            "upload_time_iso_8601": "2024-11-18T01:32:29.238332Z",
            "url": "https://files.pythonhosted.org/packages/7e/55/137adfc648940e4743148894e7733d0c2f558651be40123a9b0a7c0a1db5/llama_index_packs_multi_tenancy_rag-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "17a6972b39a5dc9e5e25ffe15863ca2be6b52ea19f55f260dbd5713442fea8c7",
                "md5": "9a89d007fd380a01f7d8de01e57b901d",
                "sha256": "374cf5f7991aa007f505fc93528193197526547311b2b9d7c5ae314785fdcc2c"
            },
            "downloads": -1,
            "filename": "llama_index_packs_multi_tenancy_rag-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9a89d007fd380a01f7d8de01e57b901d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 2863,
            "upload_time": "2024-11-18T01:32:31",
            "upload_time_iso_8601": "2024-11-18T01:32:31.497664Z",
            "url": "https://files.pythonhosted.org/packages/17/a6/972b39a5dc9e5e25ffe15863ca2be6b52ea19f55f260dbd5713442fea8c7/llama_index_packs_multi_tenancy_rag-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 01:32:31",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-multi-tenancy-rag"
}
        
Elapsed time: 1.14837s