# Neo4j Query Engine Pack
This LlamaPack creates a Neo4j query engine, and executes its `query` function. This pack offers the option of creating multiple types of query engines, namely:
- Knowledge graph vector-based entity retrieval (default if no query engine type option is provided)
- Knowledge graph keyword-based entity retrieval
- Knowledge graph hybrid entity retrieval
- Raw vector index retrieval
- Custom combo query engine (vector similarity + KG entity retrieval)
- KnowledgeGraphQueryEngine
- KnowledgeGraphRAGRetriever
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack Neo4jQueryEnginePack --download-dir ./neo4j_pack
```
You can then inspect the files at `./neo4j_pack` and use them as a template for your own project!
## Code Usage
You can download the pack to a `./neo4j_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
Neo4jQueryEnginePack = download_llama_pack(
"Neo4jQueryEnginePack", "./neo4j_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./neo4j_pack`.
Then, you can set up the pack like so:
```bash
pip install llama-index-readers-wikipedia
```
```python
# Load the docs (example of Paleo diet from Wikipedia)
from llama_index.readers.wikipedia import WikipediaReader
loader = WikipediaReader()
docs = loader.load_data(pages=["Paleolithic diet"], auto_suggest=False)
print(f"Loaded {len(docs)} documents")
# get Neo4j credentials (assume it's stored in credentials.json)
with open("credentials.json") as f:
neo4j_connection_params = json.load(f)
username = neo4j_connection_params["username"]
password = neo4j_connection_params["password"]
url = neo4j_connection_params["url"]
database = neo4j_connection_params["database"]
# create the pack
neo4j_pack = Neo4jQueryEnginePack(
username=username, password=password, url=url, database=database, docs=docs
)
```
Optionally, you can pass in the `query_engine_type` from `Neo4jQueryEngineType` to construct `Neo4jQueryEnginePack`. If `query_engine_type` is not defined, it defaults to Knowledge Graph vector based entity retrieval.
```python
from llama_index.core.packs.neo4j_query_engine.base import Neo4jQueryEngineType
# create the pack
neo4j_pack = Neo4jQueryEnginePack(
username=username,
password=password,
url=url,
database=database,
docs=docs,
query_engine_type=Neo4jQueryEngineType.KG_HYBRID,
)
```
`Neo4jQueryEnginePack` is a enum defined as follows:
```python
class Neo4jQueryEngineType(str, Enum):
"""Neo4j query engine type"""
KG_KEYWORD = "keyword"
KG_HYBRID = "hybrid"
RAW_VECTOR = "vector"
RAW_VECTOR_KG_COMBO = "vector_kg"
KG_QE = "KnowledgeGraphQueryEngine"
KG_RAG_RETRIEVER = "KnowledgeGraphRAGRetriever"
```
The `run()` function is a light wrapper around `query_engine.query()`, see a sample query below.
```python
response = neo4j_pack.run("Tell me about the benefits of paleo diet.")
```
You can also use modules individually.
```python
# call the query_engine.query()
query_engine = neo4j_pack.query_engine
response = query_engine.query("query_str")
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-neo4j-query-engine",
"maintainer": "wenqiglantz",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "knowledge graph, neo4j, query engine",
"author": "Your Name",
"author_email": "you@example.com",
"download_url": "https://files.pythonhosted.org/packages/ee/a6/30323bc17e0233d38393d9828c6e050bda04ba055dd11f8bd2d30c533233/llama_index_packs_neo4j_query_engine-0.4.0.tar.gz",
"platform": null,
"description": "# Neo4j Query Engine Pack\n\nThis LlamaPack creates a Neo4j query engine, and executes its `query` function. This pack offers the option of creating multiple types of query engines, namely:\n\n- Knowledge graph vector-based entity retrieval (default if no query engine type option is provided)\n- Knowledge graph keyword-based entity retrieval\n- Knowledge graph hybrid entity retrieval\n- Raw vector index retrieval\n- Custom combo query engine (vector similarity + KG entity retrieval)\n- KnowledgeGraphQueryEngine\n- KnowledgeGraphRAGRetriever\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack Neo4jQueryEnginePack --download-dir ./neo4j_pack\n```\n\nYou can then inspect the files at `./neo4j_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a `./neo4j_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nNeo4jQueryEnginePack = download_llama_pack(\n \"Neo4jQueryEnginePack\", \"./neo4j_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./neo4j_pack`.\n\nThen, you can set up the pack like so:\n\n```bash\npip install llama-index-readers-wikipedia\n```\n\n```python\n# Load the docs (example of Paleo diet from Wikipedia)\n\nfrom llama_index.readers.wikipedia import WikipediaReader\n\nloader = WikipediaReader()\ndocs = loader.load_data(pages=[\"Paleolithic diet\"], auto_suggest=False)\nprint(f\"Loaded {len(docs)} documents\")\n\n# get Neo4j credentials (assume it's stored in credentials.json)\nwith open(\"credentials.json\") as f:\n neo4j_connection_params = json.load(f)\n username = neo4j_connection_params[\"username\"]\n password = neo4j_connection_params[\"password\"]\n url = neo4j_connection_params[\"url\"]\n database = neo4j_connection_params[\"database\"]\n\n# create the pack\nneo4j_pack = Neo4jQueryEnginePack(\n username=username, password=password, url=url, database=database, docs=docs\n)\n```\n\nOptionally, you can pass in the `query_engine_type` from `Neo4jQueryEngineType` to construct `Neo4jQueryEnginePack`. If `query_engine_type` is not defined, it defaults to Knowledge Graph vector based entity retrieval.\n\n```python\nfrom llama_index.core.packs.neo4j_query_engine.base import Neo4jQueryEngineType\n\n# create the pack\nneo4j_pack = Neo4jQueryEnginePack(\n username=username,\n password=password,\n url=url,\n database=database,\n docs=docs,\n query_engine_type=Neo4jQueryEngineType.KG_HYBRID,\n)\n```\n\n`Neo4jQueryEnginePack` is a enum defined as follows:\n\n```python\nclass Neo4jQueryEngineType(str, Enum):\n \"\"\"Neo4j query engine type\"\"\"\n\n KG_KEYWORD = \"keyword\"\n KG_HYBRID = \"hybrid\"\n RAW_VECTOR = \"vector\"\n RAW_VECTOR_KG_COMBO = \"vector_kg\"\n KG_QE = \"KnowledgeGraphQueryEngine\"\n KG_RAG_RETRIEVER = \"KnowledgeGraphRAGRetriever\"\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`, see a sample query below.\n\n```python\nresponse = neo4j_pack.run(\"Tell me about the benefits of paleo diet.\")\n```\n\nYou can also use modules individually.\n\n```python\n# call the query_engine.query()\nquery_engine = neo4j_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "llama-index packs neo4j_query_engine integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [
"knowledge graph",
" neo4j",
" query engine"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a41185c1f0721da05e61cb62543438ceddee13be8ea67015835343a2d1e40076",
"md5": "b06a9551e352e8de1f9ff6b1464cb61c",
"sha256": "8d8f702bdc1545ba53879ce753108394695d26b5a61b12d5cd99be7b52090830"
},
"downloads": -1,
"filename": "llama_index_packs_neo4j_query_engine-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b06a9551e352e8de1f9ff6b1464cb61c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4805,
"upload_time": "2024-11-18T01:30:43",
"upload_time_iso_8601": "2024-11-18T01:30:43.066246Z",
"url": "https://files.pythonhosted.org/packages/a4/11/85c1f0721da05e61cb62543438ceddee13be8ea67015835343a2d1e40076/llama_index_packs_neo4j_query_engine-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eea630323bc17e0233d38393d9828c6e050bda04ba055dd11f8bd2d30c533233",
"md5": "259da37b1d45c11a3fd5716b827d25c6",
"sha256": "00db7f86c073952696683d64acb85c28109279b931271618097feacd35ea8b47"
},
"downloads": -1,
"filename": "llama_index_packs_neo4j_query_engine-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "259da37b1d45c11a3fd5716b827d25c6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4375,
"upload_time": "2024-11-18T01:30:43",
"upload_time_iso_8601": "2024-11-18T01:30:43.944374Z",
"url": "https://files.pythonhosted.org/packages/ee/a6/30323bc17e0233d38393d9828c6e050bda04ba055dd11f8bd2d30c533233/llama_index_packs_neo4j_query_engine-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 01:30:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-neo4j-query-engine"
}