llama-index-packs-recursive-retriever


Namellama-index-packs-recursive-retriever JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs recursive_retriever integration
upload_time2024-11-18 01:34:07
maintainerjerryjliu
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords big embedded recursive retriever small tables unstructured
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Recursive Retriever Packs

## Embedded Tables Retriever Pack w/ Unstructured.io

This LlamaPack provides an example of our embedded tables retriever.

This specific template shows the e2e process of building this. It loads
a document, builds a hierarchical node graph (with bigger parent nodes and smaller
child nodes).

Check out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/recursive_retriever/embedded_tables_unstructured/embedded_tables.ipynb).

### CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack EmbeddedTablesUnstructuredRetrieverPack --download-dir ./embedded_tables_unstructured_pack
```

You can then inspect the files at `./embedded_tables_unstructured_pack` and use them as a template for your own project.

### Code Usage

You can download the pack to a the `./embedded_tables_unstructured_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
EmbeddedTablesUnstructuredRetrieverPack = download_llama_pack(
    "EmbeddedTablesUnstructuredRetrieverPack",
    "./embedded_tables_unstructured_pack",
)
```

From here, you can use the pack, or inspect and modify the pack in `./embedded_tables_unstructured_pack`.

Then, you can set up the pack like so:

```python
# create the pack
# get documents from any data loader
embedded_tables_unstructured_pack = EmbeddedTablesUnstructuredRetrieverPack(
    "tesla_2021_10k.htm",
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = embedded_tables_unstructured_pack.run(
    "What was the revenue in 2020?"
)
```

You can also use modules individually.

```python
# get the node parser
node_parser = embedded_tables_unstructured_pack.node_parser

# get the retriever
retriever = embedded_tables_unstructured_pack.recursive_retriever

# get the query engine
query_engine = embedded_tables_unstructured_pack.query_engine
```

## Recursive Retriever - Small-to-big retrieval

This LlamaPack provides an example of our recursive retriever (small-to-big).

This specific template shows the e2e process of building this. It loads
a document, builds a hierarchical node graph (with bigger parent nodes and smaller
child nodes).

Check out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/recursive_retriever/small_to_big/small_to_big.ipynb).

### CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack RecursiveRetrieverSmallToBigPack --download-dir ./recursive_retriever_stb_pack
```

You can then inspect the files at `./recursive_retriever_stb_pack` and use them as a template for your own project.

### Code Usage

You can download the pack to a the `./recursive_retriever_stb_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
RecursiveRetrieverSmallToBigPack = download_llama_pack(
    "RecursiveRetrieverSmallToBigPack", "./recursive_retriever_stb_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./recursive_retriever_stb_pack`.

Then, you can set up the pack like so:

```python
# create the pack
# get documents from any data loader
recursive_retriever_stb_pack = RecursiveRetrieverSmallToBigPack(
    documents,
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = recursive_retriever_stb_pack.run(
    "Tell me a bout a Music celebritiy."
)
```

You can also use modules individually.

```python
# get the recursive retriever
recursive_retriever = recursive_retriever_stb_pack.recursive_retriever

# get the query engine
query_engine = recursive_retriever_stb_pack.query_engine
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-recursive-retriever",
    "maintainer": "jerryjliu",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "big, embedded, recursive, retriever, small, tables, unstructured",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/92/73/8c1e4af4db7bbb546890e6fa6298fbd370eb74869bce9d0e0f58459b3d80/llama_index_packs_recursive_retriever-0.5.0.tar.gz",
    "platform": null,
    "description": "# Recursive Retriever Packs\n\n## Embedded Tables Retriever Pack w/ Unstructured.io\n\nThis LlamaPack provides an example of our embedded tables retriever.\n\nThis specific template shows the e2e process of building this. It loads\na document, builds a hierarchical node graph (with bigger parent nodes and smaller\nchild nodes).\n\nCheck out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/recursive_retriever/embedded_tables_unstructured/embedded_tables.ipynb).\n\n### CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack EmbeddedTablesUnstructuredRetrieverPack --download-dir ./embedded_tables_unstructured_pack\n```\n\nYou can then inspect the files at `./embedded_tables_unstructured_pack` and use them as a template for your own project.\n\n### Code Usage\n\nYou can download the pack to a the `./embedded_tables_unstructured_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nEmbeddedTablesUnstructuredRetrieverPack = download_llama_pack(\n    \"EmbeddedTablesUnstructuredRetrieverPack\",\n    \"./embedded_tables_unstructured_pack\",\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./embedded_tables_unstructured_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# create the pack\n# get documents from any data loader\nembedded_tables_unstructured_pack = EmbeddedTablesUnstructuredRetrieverPack(\n    \"tesla_2021_10k.htm\",\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = embedded_tables_unstructured_pack.run(\n    \"What was the revenue in 2020?\"\n)\n```\n\nYou can also use modules individually.\n\n```python\n# get the node parser\nnode_parser = embedded_tables_unstructured_pack.node_parser\n\n# get the retriever\nretriever = embedded_tables_unstructured_pack.recursive_retriever\n\n# get the query engine\nquery_engine = embedded_tables_unstructured_pack.query_engine\n```\n\n## Recursive Retriever - Small-to-big retrieval\n\nThis LlamaPack provides an example of our recursive retriever (small-to-big).\n\nThis specific template shows the e2e process of building this. It loads\na document, builds a hierarchical node graph (with bigger parent nodes and smaller\nchild nodes).\n\nCheck out the [notebook here](https://github.com/run-llama/llama-hub/blob/main/llama_hub/llama_packs/recursive_retriever/small_to_big/small_to_big.ipynb).\n\n### CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack RecursiveRetrieverSmallToBigPack --download-dir ./recursive_retriever_stb_pack\n```\n\nYou can then inspect the files at `./recursive_retriever_stb_pack` and use them as a template for your own project.\n\n### Code Usage\n\nYou can download the pack to a the `./recursive_retriever_stb_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nRecursiveRetrieverSmallToBigPack = download_llama_pack(\n    \"RecursiveRetrieverSmallToBigPack\", \"./recursive_retriever_stb_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./recursive_retriever_stb_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# create the pack\n# get documents from any data loader\nrecursive_retriever_stb_pack = RecursiveRetrieverSmallToBigPack(\n    documents,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = recursive_retriever_stb_pack.run(\n    \"Tell me a bout a Music celebritiy.\"\n)\n```\n\nYou can also use modules individually.\n\n```python\n# get the recursive retriever\nrecursive_retriever = recursive_retriever_stb_pack.recursive_retriever\n\n# get the query engine\nquery_engine = recursive_retriever_stb_pack.query_engine\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index packs recursive_retriever integration",
    "version": "0.5.0",
    "project_urls": null,
    "split_keywords": [
        "big",
        " embedded",
        " recursive",
        " retriever",
        " small",
        " tables",
        " unstructured"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "96ffbf73c3557798215844282336b28c97b688cf34ede0d344baa3a16ecac410",
                "md5": "89181deb2d4a4b892148e8a01fb35454",
                "sha256": "745842bc53a3291083da76d68ef9140bae8ff117d755c2b6e1e6913e5976a686"
            },
            "downloads": -1,
            "filename": "llama_index_packs_recursive_retriever-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "89181deb2d4a4b892148e8a01fb35454",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 5642,
            "upload_time": "2024-11-18T01:34:07",
            "upload_time_iso_8601": "2024-11-18T01:34:07.071611Z",
            "url": "https://files.pythonhosted.org/packages/96/ff/bf73c3557798215844282336b28c97b688cf34ede0d344baa3a16ecac410/llama_index_packs_recursive_retriever-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "92738c1e4af4db7bbb546890e6fa6298fbd370eb74869bce9d0e0f58459b3d80",
                "md5": "8eb725438844af6e87ef8a1c6626d598",
                "sha256": "4078af5ed2c1ef68edf539ca30d22d7aff3888a773cf25182dbd33c48d488644"
            },
            "downloads": -1,
            "filename": "llama_index_packs_recursive_retriever-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8eb725438844af6e87ef8a1c6626d598",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4241,
            "upload_time": "2024-11-18T01:34:07",
            "upload_time_iso_8601": "2024-11-18T01:34:07.882895Z",
            "url": "https://files.pythonhosted.org/packages/92/73/8c1e4af4db7bbb546890e6fa6298fbd370eb74869bce9d0e0f58459b3d80/llama_index_packs_recursive_retriever-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 01:34:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-recursive-retriever"
}
        
Elapsed time: 0.41695s