llama-index-packs-resume-screener


Namellama-index-packs-resume-screener JSON
Version 0.9.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs resume_screener integration
upload_time2025-07-31 03:02:11
maintainerDisiok
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords document pdf resume structured output
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Resumer Screener Pack

This LlamaPack loads a resume file, and review it against a user specified job description and screening criteria.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack ResumeScreenerPack --download-dir ./resume_screener_pack
```

You can then inspect the files at `./resume_screener_pack` and use them as a template for your own project!

## Code Usage

You can download the pack to a `./resume_screener_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
ResumeScreenerPack = download_llama_pack(
    "ResumeScreenerPack", "./resume_screener_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./resume_screener_pack`.

Then, you can set up the pack like so:

```python
# create the pack
resume_screener = ResumeScreenerPack(
    job_description="<general job description>",
    criteria=["<job criterion>", "<another job criterion>"],
)
```

```python
response = resume_screener.run(resume_path="resume.pdf")
print(response.overall_decision)
```

The `response` will be a pydantic model with the following schema

```python
class CriteriaDecision(BaseModel):
    """The decision made based on a single criteria"""

    decision: Field(
        type=bool, description="The decision made based on the criteria"
    )
    reasoning: Field(type=str, description="The reasoning behind the decision")


class ResumeScreenerDecision(BaseModel):
    """The decision made by the resume screener"""

    criteria_decisions: Field(
        type=List[CriteriaDecision],
        description="The decisions made based on the criteria",
    )
    overall_reasoning: Field(
        type=str, description="The reasoning behind the overall decision"
    )
    overall_decision: Field(
        type=bool,
        description="The overall decision made based on the criteria",
    )
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-resume-screener",
    "maintainer": "Disiok",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "document, pdf, resume, structured output",
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/1c/91/0b4dbd7c9fecf00399e84eef208531408d847734f0e197acc93148b8150e/llama_index_packs_resume_screener-0.9.0.tar.gz",
    "platform": null,
    "description": "# Resumer Screener Pack\n\nThis LlamaPack loads a resume file, and review it against a user specified job description and screening criteria.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack ResumeScreenerPack --download-dir ./resume_screener_pack\n```\n\nYou can then inspect the files at `./resume_screener_pack` and use them as a template for your own project!\n\n## Code Usage\n\nYou can download the pack to a `./resume_screener_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nResumeScreenerPack = download_llama_pack(\n    \"ResumeScreenerPack\", \"./resume_screener_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./resume_screener_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# create the pack\nresume_screener = ResumeScreenerPack(\n    job_description=\"<general job description>\",\n    criteria=[\"<job criterion>\", \"<another job criterion>\"],\n)\n```\n\n```python\nresponse = resume_screener.run(resume_path=\"resume.pdf\")\nprint(response.overall_decision)\n```\n\nThe `response` will be a pydantic model with the following schema\n\n```python\nclass CriteriaDecision(BaseModel):\n    \"\"\"The decision made based on a single criteria\"\"\"\n\n    decision: Field(\n        type=bool, description=\"The decision made based on the criteria\"\n    )\n    reasoning: Field(type=str, description=\"The reasoning behind the decision\")\n\n\nclass ResumeScreenerDecision(BaseModel):\n    \"\"\"The decision made by the resume screener\"\"\"\n\n    criteria_decisions: Field(\n        type=List[CriteriaDecision],\n        description=\"The decisions made based on the criteria\",\n    )\n    overall_reasoning: Field(\n        type=str, description=\"The reasoning behind the overall decision\"\n    )\n    overall_decision: Field(\n        type=bool,\n        description=\"The overall decision made based on the criteria\",\n    )\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index packs resume_screener integration",
    "version": "0.9.0",
    "project_urls": null,
    "split_keywords": [
        "document",
        " pdf",
        " resume",
        " structured output"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3c90f3cd05f586dc087ebab58efe67a1801cd972d35ab1b654d37b79abf69fd7",
                "md5": "33677b642bd032fb974a366e98fcbd5f",
                "sha256": "2e888597899fc0b879d2acad8043f90a0b4837c8e7c169975ca14c992e248c08"
            },
            "downloads": -1,
            "filename": "llama_index_packs_resume_screener-0.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "33677b642bd032fb974a366e98fcbd5f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 4226,
            "upload_time": "2025-07-31T03:02:10",
            "upload_time_iso_8601": "2025-07-31T03:02:10.458587Z",
            "url": "https://files.pythonhosted.org/packages/3c/90/f3cd05f586dc087ebab58efe67a1801cd972d35ab1b654d37b79abf69fd7/llama_index_packs_resume_screener-0.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1c910b4dbd7c9fecf00399e84eef208531408d847734f0e197acc93148b8150e",
                "md5": "a6e1c76e92bf769fa2bc5df9fa9ec8e0",
                "sha256": "de5f2e255805b4551aa429388cf2701a58b859a79cb2236acf555a0c7597855e"
            },
            "downloads": -1,
            "filename": "llama_index_packs_resume_screener-0.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a6e1c76e92bf769fa2bc5df9fa9ec8e0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4444,
            "upload_time": "2025-07-31T03:02:11",
            "upload_time_iso_8601": "2025-07-31T03:02:11.505193Z",
            "url": "https://files.pythonhosted.org/packages/1c/91/0b4dbd7c9fecf00399e84eef208531408d847734f0e197acc93148b8150e/llama_index_packs_resume_screener-0.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-31 03:02:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-resume-screener"
}
        
Elapsed time: 0.91875s