llama-index-packs-retry-engine-weaviate


Namellama-index-packs-retry-engine-weaviate JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs retry_engine_weaviate integration
upload_time2024-11-18 00:53:23
maintainererika-cardenas
docs_urlNone
authorYour Name
requires_python<4.0,>=3.9
licenseMIT
keywords engine retry weaviate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Retry Query Engine

This LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Retry Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/evaluation/RetryQuery.html) for your RAG application.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack
```

You can then inspect the files at `./weaviate_pack` and use them as a template for your own project.

## Code Usage

You can download the pack to a the `./weaviate_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.

Then, you can set up the pack like so:

```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = weaviate_pack.run("Tell me a bout a Music celebritiy.")
```

You can also use modules individually.

```python
# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-retry-engine-weaviate",
    "maintainer": "erika-cardenas",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "engine, retry, weaviate",
    "author": "Your Name",
    "author_email": "you@example.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/ba/3c51bd30e8bfbe7b762e897d11e1bec5b83c1d9759c14d39f04928affcc8/llama_index_packs_retry_engine_weaviate-0.4.0.tar.gz",
    "platform": null,
    "description": "# Retry Query Engine\n\nThis LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Retry Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/evaluation/RetryQuery.html) for your RAG application.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack\n```\n\nYou can then inspect the files at `./weaviate_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./weaviate_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nWeaviateRetryEnginePack = download_llama_pack(\n    \"WeaviateRetryEnginePack\", \"./weaviate_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n    content_info=\"brief biography of celebrities\",\n    metadata_info=[\n        MetadataInfo(\n            name=\"category\",\n            type=\"str\",\n            description=(\n                \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n            ),\n        ),\n    ],\n)\n\nimport weaviate\n\nclient = weaviate.Client()\n\nnodes = [...]\n\n# create the pack\nweaviate_pack = WeaviateRetryQueryEnginePack(\n    collection_name=\"test\",\n    vector_store_info=vector_store_index,\n    nodes=nodes,\n    client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = weaviate_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = weaviate_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = weaviate_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "llama-index packs retry_engine_weaviate integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [
        "engine",
        " retry",
        " weaviate"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f069eea5b3d66d2f66d979603a47c91008e82cf31167502007d12895434bb6fc",
                "md5": "06697d17c2d888a984b3fbc4798deda0",
                "sha256": "201fa7af1a4068fa8e77f13bb134ae94ecc5ea66b98f0db0adaa51f57cf3e5ab"
            },
            "downloads": -1,
            "filename": "llama_index_packs_retry_engine_weaviate-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06697d17c2d888a984b3fbc4798deda0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 3439,
            "upload_time": "2024-11-18T00:53:22",
            "upload_time_iso_8601": "2024-11-18T00:53:22.251976Z",
            "url": "https://files.pythonhosted.org/packages/f0/69/eea5b3d66d2f66d979603a47c91008e82cf31167502007d12895434bb6fc/llama_index_packs_retry_engine_weaviate-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f5ba3c51bd30e8bfbe7b762e897d11e1bec5b83c1d9759c14d39f04928affcc8",
                "md5": "f8557dd1f9a25426e8f20189c4197f43",
                "sha256": "5425108e064c2c01d93ef447511505c5525054aa973001b0258a015a0e0880e4"
            },
            "downloads": -1,
            "filename": "llama_index_packs_retry_engine_weaviate-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f8557dd1f9a25426e8f20189c4197f43",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 3075,
            "upload_time": "2024-11-18T00:53:23",
            "upload_time_iso_8601": "2024-11-18T00:53:23.740924Z",
            "url": "https://files.pythonhosted.org/packages/f5/ba/3c51bd30e8bfbe7b762e897d11e1bec5b83c1d9759c14d39f04928affcc8/llama_index_packs_retry_engine_weaviate-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 00:53:23",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-retry-engine-weaviate"
}
        
Elapsed time: 1.33821s