llama-index-packs-retry-engine-weaviate


Namellama-index-packs-retry-engine-weaviate JSON
Version 0.5.1 PyPI version JSON
download
home_pageNone
Summaryllama-index packs retry_engine_weaviate integration
upload_time2025-09-08 20:50:09
maintainererika-cardenas
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords engine retry weaviate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Retry Query Engine

This LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Retry Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/evaluation/RetryQuery.html) for your RAG application.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack
```

You can then inspect the files at `./weaviate_pack` and use them as a template for your own project.

## Code Usage

You can download the pack to a the `./weaviate_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateRetryEnginePack = download_llama_pack(
    "WeaviateRetryEnginePack", "./weaviate_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.

Then, you can set up the pack like so:

```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateRetryQueryEnginePack(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = weaviate_pack.run("Tell me a bout a Music celebritiy.")
```

You can also use modules individually.

```python
# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-retry-engine-weaviate",
    "maintainer": "erika-cardenas",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "engine, retry, weaviate",
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/f9/47/4eb2edf5408bdb76066aab478275120ce54a413be10758902bd91b0d213c/llama_index_packs_retry_engine_weaviate-0.5.1.tar.gz",
    "platform": null,
    "description": "# Retry Query Engine\n\nThis LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Retry Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/evaluation/RetryQuery.html) for your RAG application.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack WeaviateRetryEnginePack --download-dir ./weaviate_pack\n```\n\nYou can then inspect the files at `./weaviate_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./weaviate_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nWeaviateRetryEnginePack = download_llama_pack(\n    \"WeaviateRetryEnginePack\", \"./weaviate_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n    content_info=\"brief biography of celebrities\",\n    metadata_info=[\n        MetadataInfo(\n            name=\"category\",\n            type=\"str\",\n            description=(\n                \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n            ),\n        ),\n    ],\n)\n\nimport weaviate\n\nclient = weaviate.Client()\n\nnodes = [...]\n\n# create the pack\nweaviate_pack = WeaviateRetryQueryEnginePack(\n    collection_name=\"test\",\n    vector_store_info=vector_store_index,\n    nodes=nodes,\n    client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = weaviate_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = weaviate_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = weaviate_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index packs retry_engine_weaviate integration",
    "version": "0.5.1",
    "project_urls": null,
    "split_keywords": [
        "engine",
        " retry",
        " weaviate"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "508cedfc5a025576536aedaba63e52a113925b4b2c259dbb687ce208515d34f4",
                "md5": "3ca51671f9722e556d5da4b9648ab07d",
                "sha256": "6392a03c6a9018b141c4cc06827f5ad31a0fef589e68d15edca0251bd66ec86e"
            },
            "downloads": -1,
            "filename": "llama_index_packs_retry_engine_weaviate-0.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3ca51671f9722e556d5da4b9648ab07d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 4283,
            "upload_time": "2025-09-08T20:50:05",
            "upload_time_iso_8601": "2025-09-08T20:50:05.246669Z",
            "url": "https://files.pythonhosted.org/packages/50/8c/edfc5a025576536aedaba63e52a113925b4b2c259dbb687ce208515d34f4/llama_index_packs_retry_engine_weaviate-0.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f9474eb2edf5408bdb76066aab478275120ce54a413be10758902bd91b0d213c",
                "md5": "f47e198abc848bf81edfe6b39e67888a",
                "sha256": "3920c86a800ee5e4cb9edf8f69c4962a59310858efad4858f9619f68650baba6"
            },
            "downloads": -1,
            "filename": "llama_index_packs_retry_engine_weaviate-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f47e198abc848bf81edfe6b39e67888a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4506,
            "upload_time": "2025-09-08T20:50:09",
            "upload_time_iso_8601": "2025-09-08T20:50:09.067265Z",
            "url": "https://files.pythonhosted.org/packages/f9/47/4eb2edf5408bdb76066aab478275120ce54a413be10758902bd91b0d213c/llama_index_packs_retry_engine_weaviate-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-08 20:50:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-retry-engine-weaviate"
}
        
Elapsed time: 0.97061s