# Sub Question Query Engine
This LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Sub-Question Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html) for your RAG application.
## CLI Usage
You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:
```bash
llamaindex-cli download-llamapack WeaviateSubQuestionPack --download-dir ./weaviate_pack
```
You can then inspect the files at `./weaviate_pack` and use them as a template for your own project.
## Code Usage
You can download the pack to a the `./weaviate_pack` directory:
```python
from llama_index.core.llama_pack import download_llama_pack
# download and install dependencies
WeaviateSubQuestionPack = download_llama_pack(
"WeaviateSubQuestionPack", "./weaviate_pack"
)
```
From here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.
Then, you can set up the pack like so:
```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports Entertainment, Business, Music]"
),
),
],
)
import weaviate
client = weaviate.Client()
nodes = [...]
# create the pack
weaviate_pack = WeaviateSubQuestion(
collection_name="test",
vector_store_info=vector_store_index,
nodes=nodes,
client=client,
)
```
The `run()` function is a light wrapper around `query_engine.query()`.
```python
response = weaviate_pack.run("Tell me a bout a Music celebritiy.")
```
You can also use modules individually.
```python
# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")
# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")
```
Raw data
{
"_id": null,
"home_page": null,
"name": "llama-index-packs-sub-question-weaviate",
"maintainer": "erika-cardenas",
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "index, query, weaviate",
"author": null,
"author_email": "Your Name <you@example.com>",
"download_url": "https://files.pythonhosted.org/packages/4e/5b/a4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be/llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
"platform": null,
"description": "# Sub Question Query Engine\n\nThis LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Sub-Question Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html) for your RAG application.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack WeaviateSubQuestionPack --download-dir ./weaviate_pack\n```\n\nYou can then inspect the files at `./weaviate_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./weaviate_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nWeaviateSubQuestionPack = download_llama_pack(\n \"WeaviateSubQuestionPack\", \"./weaviate_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n content_info=\"brief biography of celebrities\",\n metadata_info=[\n MetadataInfo(\n name=\"category\",\n type=\"str\",\n description=(\n \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n ),\n ),\n ],\n)\n\nimport weaviate\n\nclient = weaviate.Client()\n\nnodes = [...]\n\n# create the pack\nweaviate_pack = WeaviateSubQuestion(\n collection_name=\"test\",\n vector_store_info=vector_store_index,\n nodes=nodes,\n client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = weaviate_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = weaviate_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = weaviate_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "llama-index packs sub_question_weaviate integration",
"version": "0.4.0",
"project_urls": null,
"split_keywords": [
"index",
" query",
" weaviate"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "7f7908ae338436a72556306fe5893b7198a52267f50b8ffa982f0824efe4ead1",
"md5": "0ca03ccfe775cdc6e4736a056913f7ec",
"sha256": "70aeed85fe68f7b340561acbc9f480250de2e5ee36d7dcf7e49673b6776bfb55"
},
"downloads": -1,
"filename": "llama_index_packs_sub_question_weaviate-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0ca03ccfe775cdc6e4736a056913f7ec",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 4239,
"upload_time": "2025-07-30T21:32:15",
"upload_time_iso_8601": "2025-07-30T21:32:15.500195Z",
"url": "https://files.pythonhosted.org/packages/7f/79/08ae338436a72556306fe5893b7198a52267f50b8ffa982f0824efe4ead1/llama_index_packs_sub_question_weaviate-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4e5ba4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be",
"md5": "0580f8e65e59e5888e21b952c9b97e4b",
"sha256": "e249c731c5c4803f741fc2c7e01ba6c0c5686f10359344337d8dc31f5ec5921d"
},
"downloads": -1,
"filename": "llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "0580f8e65e59e5888e21b952c9b97e4b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 4465,
"upload_time": "2025-07-30T21:32:16",
"upload_time_iso_8601": "2025-07-30T21:32:16.183790Z",
"url": "https://files.pythonhosted.org/packages/4e/5b/a4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be/llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 21:32:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "llama-index-packs-sub-question-weaviate"
}