llama-index-packs-sub-question-weaviate


Namellama-index-packs-sub-question-weaviate JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
Summaryllama-index packs sub_question_weaviate integration
upload_time2025-07-30 21:32:16
maintainererika-cardenas
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords index query weaviate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Sub Question Query Engine

This LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Sub-Question Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html) for your RAG application.

## CLI Usage

You can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:

```bash
llamaindex-cli download-llamapack WeaviateSubQuestionPack --download-dir ./weaviate_pack
```

You can then inspect the files at `./weaviate_pack` and use them as a template for your own project.

## Code Usage

You can download the pack to a the `./weaviate_pack` directory:

```python
from llama_index.core.llama_pack import download_llama_pack

# download and install dependencies
WeaviateSubQuestionPack = download_llama_pack(
    "WeaviateSubQuestionPack", "./weaviate_pack"
)
```

From here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.

Then, you can set up the pack like so:

```python
# setup pack arguments
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo

vector_store_info = VectorStoreInfo(
    content_info="brief biography of celebrities",
    metadata_info=[
        MetadataInfo(
            name="category",
            type="str",
            description=(
                "Category of the celebrity, one of [Sports Entertainment, Business, Music]"
            ),
        ),
    ],
)

import weaviate

client = weaviate.Client()

nodes = [...]

# create the pack
weaviate_pack = WeaviateSubQuestion(
    collection_name="test",
    vector_store_info=vector_store_index,
    nodes=nodes,
    client=client,
)
```

The `run()` function is a light wrapper around `query_engine.query()`.

```python
response = weaviate_pack.run("Tell me a bout a Music celebritiy.")
```

You can also use modules individually.

```python
# use the retriever
retriever = weaviate_pack.retriever
nodes = retriever.retrieve("query_str")

# use the query engine
query_engine = weaviate_pack.query_engine
response = query_engine.query("query_str")
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "llama-index-packs-sub-question-weaviate",
    "maintainer": "erika-cardenas",
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "index, query, weaviate",
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/4e/5b/a4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be/llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
    "platform": null,
    "description": "# Sub Question Query Engine\n\nThis LlamaPack inserts your data into [Weaviate](https://weaviate.io/developers/weaviate) and uses the [Sub-Question Query Engine](https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html) for your RAG application.\n\n## CLI Usage\n\nYou can download llamapacks directly using `llamaindex-cli`, which comes installed with the `llama-index` python package:\n\n```bash\nllamaindex-cli download-llamapack WeaviateSubQuestionPack --download-dir ./weaviate_pack\n```\n\nYou can then inspect the files at `./weaviate_pack` and use them as a template for your own project.\n\n## Code Usage\n\nYou can download the pack to a the `./weaviate_pack` directory:\n\n```python\nfrom llama_index.core.llama_pack import download_llama_pack\n\n# download and install dependencies\nWeaviateSubQuestionPack = download_llama_pack(\n    \"WeaviateSubQuestionPack\", \"./weaviate_pack\"\n)\n```\n\nFrom here, you can use the pack, or inspect and modify the pack in `./weaviate_pack`.\n\nThen, you can set up the pack like so:\n\n```python\n# setup pack arguments\nfrom llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo\n\nvector_store_info = VectorStoreInfo(\n    content_info=\"brief biography of celebrities\",\n    metadata_info=[\n        MetadataInfo(\n            name=\"category\",\n            type=\"str\",\n            description=(\n                \"Category of the celebrity, one of [Sports Entertainment, Business, Music]\"\n            ),\n        ),\n    ],\n)\n\nimport weaviate\n\nclient = weaviate.Client()\n\nnodes = [...]\n\n# create the pack\nweaviate_pack = WeaviateSubQuestion(\n    collection_name=\"test\",\n    vector_store_info=vector_store_index,\n    nodes=nodes,\n    client=client,\n)\n```\n\nThe `run()` function is a light wrapper around `query_engine.query()`.\n\n```python\nresponse = weaviate_pack.run(\"Tell me a bout a Music celebritiy.\")\n```\n\nYou can also use modules individually.\n\n```python\n# use the retriever\nretriever = weaviate_pack.retriever\nnodes = retriever.retrieve(\"query_str\")\n\n# use the query engine\nquery_engine = weaviate_pack.query_engine\nresponse = query_engine.query(\"query_str\")\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "llama-index packs sub_question_weaviate integration",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [
        "index",
        " query",
        " weaviate"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7f7908ae338436a72556306fe5893b7198a52267f50b8ffa982f0824efe4ead1",
                "md5": "0ca03ccfe775cdc6e4736a056913f7ec",
                "sha256": "70aeed85fe68f7b340561acbc9f480250de2e5ee36d7dcf7e49673b6776bfb55"
            },
            "downloads": -1,
            "filename": "llama_index_packs_sub_question_weaviate-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0ca03ccfe775cdc6e4736a056913f7ec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 4239,
            "upload_time": "2025-07-30T21:32:15",
            "upload_time_iso_8601": "2025-07-30T21:32:15.500195Z",
            "url": "https://files.pythonhosted.org/packages/7f/79/08ae338436a72556306fe5893b7198a52267f50b8ffa982f0824efe4ead1/llama_index_packs_sub_question_weaviate-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4e5ba4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be",
                "md5": "0580f8e65e59e5888e21b952c9b97e4b",
                "sha256": "e249c731c5c4803f741fc2c7e01ba6c0c5686f10359344337d8dc31f5ec5921d"
            },
            "downloads": -1,
            "filename": "llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0580f8e65e59e5888e21b952c9b97e4b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 4465,
            "upload_time": "2025-07-30T21:32:16",
            "upload_time_iso_8601": "2025-07-30T21:32:16.183790Z",
            "url": "https://files.pythonhosted.org/packages/4e/5b/a4b0d86a419cfad38bad7d27431f1550278a5c84ad784d3f28ab69e701be/llama_index_packs_sub_question_weaviate-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 21:32:16",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "llama-index-packs-sub-question-weaviate"
}
        
Elapsed time: 0.95176s